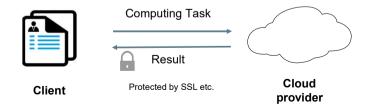
Enabling Rack-scale Confidential Computing using Heterogeneous Trusted Execution Environment

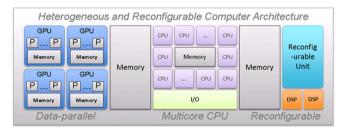


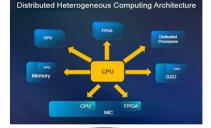
Our TEE-related projects

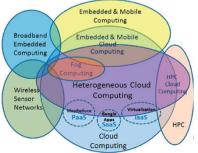
- Intel SGX side channel attacks and defenses
 - Page-level (access-bit based) attack, Cache-DRAM attack
 - 2-level directional branch prediction attack
 - Hyperrace: protection against AEX and HT-based attacks
- Enhancing existing TEEs (implemented on SGX)
 - Multi-users in-enclave service protection against memory corruption attacks
 - Confidential attestation attestation without undermining code privacy
- Others
 - TEE assisted HE/MPC/ML/FL
 - Customized TEEs
 - Heterogeneous TEE
 - Hardware in-enclave isolation
 - Hardware protection against side channels

Trusting the cloud provider is difficult

- Bugs in the software stack, such as hypervisor
- The cloud provider may steal user data for its own interest
- Malicious insider threat (from cloud administrators)

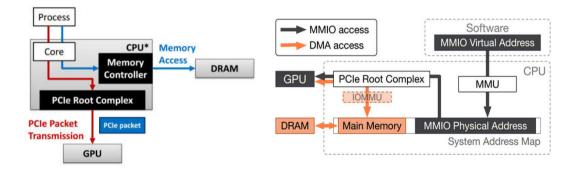

Introducing (hardware) TEEs to isolate computation


- TEEs cannot by passed by software
 - Hardware root of trust
 - Protection against privileged software attacks (such as corrupted hypervisor, operating system, SMM, BIOS etc.)
 - (Optional) Protection against certain hardware attacks
 - (Optional) Remote trust establishment with remote attestation
 - Intel SGX, ARM TrustZone, AMD SEV etc.



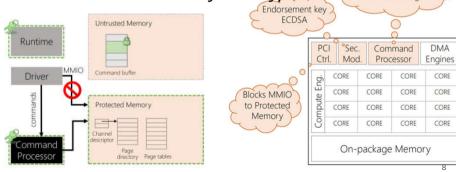
Heterogeneous (Cloud) Computing

- Flexibility
 - CPU > GPU > FPGA > ASIC
- Efficiency
 - CPU < GPU < FPGA < ASIC



Problem

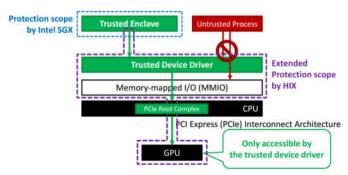
- TEE support for heterogeneous computing units
 - GPU, FPGA, (AI) accelerators
 - Scalable confidential compute or data intensive (CDI) computing
- Existing research proposals for GPU TEEs
 - Graviton, HIX
 - Hardware changes to CPU (adopted by *HIX*) or GPU (adopted by *Graviton*)
 - Performance critical hardware (GPU cores) unchanged


• How are CPU and GPU connected?

I/O path in PCI Express system architecture

Existing GPU TEEs

- Graviton
 - CPU's MMIO accesses to protected memory are blocked by the GPU hardware
 - DMA buffer in untrusted memory is encrypted



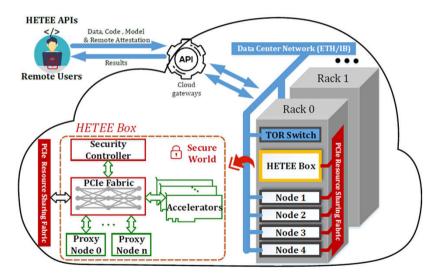
Remote attestation VM mgmt, commands

AES-GCM engine

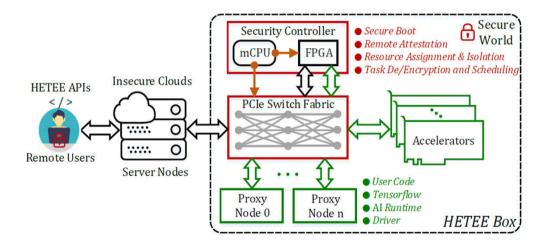
Existing GPU TEEs

- HIX
 - Extend TEE to I/O path (from SGX enclave to the device)
 - Modify CPU to support GPU enclave (trusted GPU driver), which has exclusive access to GPU MMIO region
 - DMA buffer in untrusted memory is encrypted

Existing GPU TEEs


- Hardware modifications leave large volumes of **legacy** GPUs unprotected
- GPU programing paradigm features **frequent** communication
 - Communication overhead for frequent encryption/decryption
- Communication patterns lead to side channel leakages
 - For example, GPU kernel execution time
 - Ref: Using timing information to recover image classification in ImageNet [1]

[1] Hunt et al. Telekine: Secure Computing with Cloud GPUs (NSDI'2020)


• Design goals

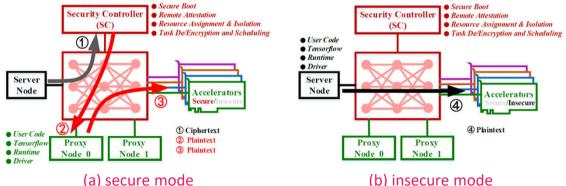
- Low (no) hardware changes to existing GPUs or accelerators
- Small trusted computing base (TCB)
- Limited (side channel) attack surface
- Low performance overhead
- Threat Model
 - Software attacks
 - Physical attacks
 - Firmware
 - PaaS Model

Rack-scale Application Scenario

HETEE Overview

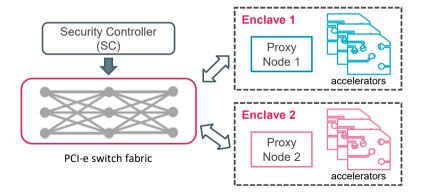
HETEE Overview

PCI-e switch fabric

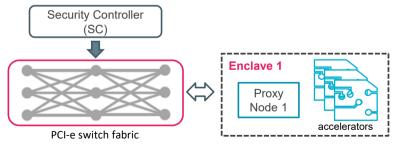


The PEX9797 family offers fully non-blocking and low-latency PCI Express Gen 3 managed switches (96 to 12 lanes) for high-performance, low-latency, scalable, and cost-effective PCIe-based Flash JBODs, NVMe HBAs and Rackscale Fabrics. This Broadcom technology provides enterprise and cloud data center equipment designers the ability to share pools of I/Os and compute resources and to enable multiple hosts to reside on a single PCIe-based network topology using standard PCIe enumeration – a capability not previously available in PCIe. The hosts communicate through Tunneling Window Connection (TWC), Ethernet-like DMA, and do so using standard hosts, end-points. Broadcom offers complete turn-key solutions for various applications that include switch silicon and software that allow customers to rapidly release their products to the market.

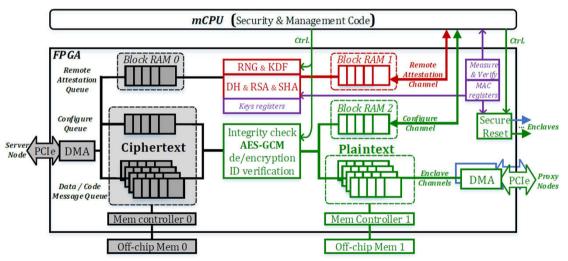
Elastic Resources Allocation and Isolation


PCI-e switch fabric: Software-defined fabric

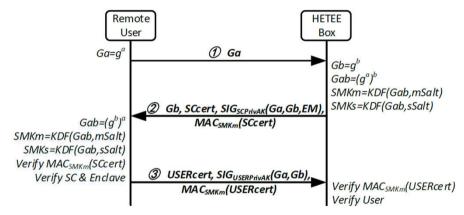
- High performance
- Flexible topology


HETEE enclaves

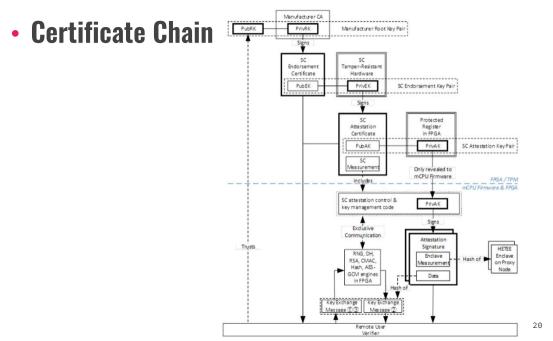
• Physical isolation for concurrent enclaves


HETEE enclaves

- Physical isolation for sequential enclaves
 - protected by secure reset mechanism
 - how to securely reset a GPU/accelerator/proxy node?
 - nvidia-smi --gpu-reset
 - o assumptions: accelerator firmwares are protected



Q. Why the proxy node software (OS/TensorFlow framework/GPU driver etc.) are outside the TCB?


SC modules

Remote Attestation and Symmetric Key Negotiation

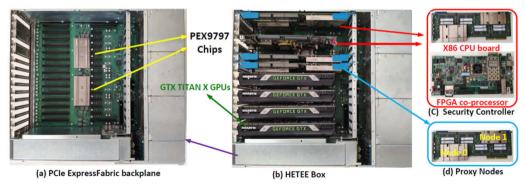
Each HETEE platform includes two sets of public key pairs, Endorsement Key (EK) and Attestation Key (AK). The SC_cert contains the SC measurement, certificate chain and device ID, and is signed using the EK private key. The enclave measurement (EM) is signed with the AK private key.

• Security Analysis

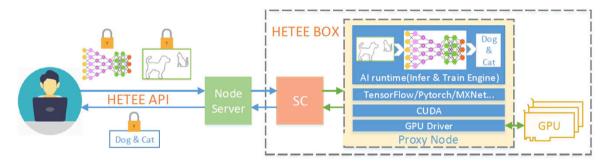
- Physical attack protection
 - A microcontroller (MCU) system and a set of sensors (e.g., pressure, vibration and temperature etc.)
- Protection against software attacks
 - Host software can be fully controlled by the attacker
 - Proxy software can have vulnerabilities (under the PaaS model)
- Trust chain
 - RoT: endorsement key, stored in encrypted FPGA bitstream
 - FPGA (bitstream) -> SC firmware code -> proxy cpu firmware
- Side Channels
 - Physical isolation to prevent shared resources

• Security Analysis

- TCB analysis
 - SC: FPGA encrypted bitstream, and mCPU firmware
 - GPU firmware
 - MCU for protection against physical attacks
 - Proxy CPU firmware: verified by SC and not included
- Validity for assumptions
 - Is FPGA bitstream secure ^[2]? Bitstream encryption for authenticity and confidentiality
 - Is the mCPU firmware secure (secure boot support)?
 - GPU vendors adopt firmware signature checking?
 - Physical attack protection using the MCU?


[2] Ender et al. The Unpatchable Silicon: A Full Break of the Bitstream Encryption of Xilinx 7-Series FPGAs. Usenix Security 2020.

Discussion


- Sealing
 - System vendor or authorized third party
- Maintenance
 - Reopened by the system vendor or authorized third party
 - Proxy node software can be upgraded without opening the classic
- Cooling
 - Cooling mechanisms, such as air channel design, front/rear thermal vent, fans with speed control, air or water cooling can be integrated

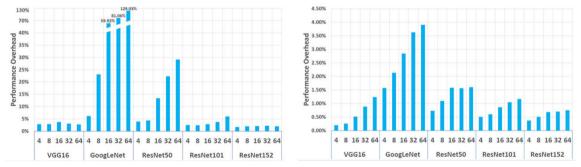
• Prototype System

Component	Hardware	Software			
Security	Intel Xeon-E3 1220V6	Tailored coreboot 4.10			
Controller	DDR4 16GB 2400MHz	with security management			
	Xilinx Zynq FPGA	code, binary size is < 300 KB			
		TensorFlow 1.11.0			
Proxy	Intel Xeon-E3 1220V6	CUDA 9.0			
Node	DDR4 16GB 2400MHz	Nvidia Driver 396.54			
		CentOS 7.2			
GPU	Nvidia GTX TITAN				
PCIe Fabric	PEX9797				

Confidential AI service

Performance Evaluation

(a) Inference


(a) Training

HETEE latency overhead on single GPU with different batch sizes.

Performance Evaluation

(a) Inference

Model	Model size	Para- meters	Layers	Image size	Туре
VGG16 [54]	500 MiB	138 M	16	224x224x3	1K
GoogLeNet [55]	28 MiB	5 M	22	224x224x3	1K
ResNet50 [56]	100 MiB	25 M	50	224x224x3	1K
ResNet101 [56]	150 MiB	44 M	101	224x224x3	1K
ResNet152 [56]	200 MiB	60 M	152	224x224x3	1K

(a) Training

HETEE throughput overhead on single GPU with different batch sizes.

• Performance Evaluation

HETEE inference throughput scalability evaluation (normalized to the baseline)

Model	Batch size	4		8			16			
	Number of GPU	1 GPU	2 GPUs	4 GPUs	1 GPU	2 GPUs	4 GPUs	1 GPU	2 GPUs	4 GPUs
VGG16	Baseline	1.00	1.75	2.52	1.00	1.58	2.74	1.00	1.84	3.02
	HETEE	0.97	1.65	2.48	0.97	1.53	2.56	0.96	1.67	2.68
GoogLeNet	Baseline	1.00	1.37	1.60	1.00	1.47	1.76	1.00	1.29	1.72
	HETEE	0.94	1.33	1.45	0.81	1.38	1.49	0.63	1.02	1.24
ResNet50	Baseline	1.00	1.66	2.73	1.00	1.53	2.39	1.00	1.69	2.73
	HETEE	0.96	1.61	2.46	0.96	1.54	2.34	0.90	1.62	2.39
ResNet101	Baseline	1.00	1.73	2.89	1.00	1.65	2.71	1.00	1.64	2.76
	HETEE	0.98	1.63	2.82	0.98	1.59	2.58	0.97	1.56	2.70
ResNet152	Baseline	1.00	1.72	3.26	1.00	1.79	3.10	1.00	1.67	3.35
	HETEE	0.98	1.57	2.99	0.98	1.61	2.82	0.98	1.61	3.28
Average	Baseline	1.00	1.65	2.60	1.00	1.60	2.54	1.00	1.63	2.72
	HETEE	0.97	1.56	2.44	0.94	1.53	2.36	0.89	1.50	2.46

Thanks