
Side Channel Risks in Hardware 
Trusted Execution Environments (TEEs)

Wenhao Wang (王文浩)

May 2019



About Me

 Research Associate Professor (副研究员) of Institute of Information 
Engineering, CAS

 Previously worked as a visiting researcher in Indiana University (with Prof.
XiaoFeng Wang)

 Research Interests
➢ System Security

➢ Computer Architectural Security

➢ Isolation with Hardware Features

➢ Privacy Preserving Computing Technologies 

➢ Cryptography (esp. Symmetric Cryptanalysis)

 Email：wangwenhao@iie.ac.cn

mailto:wangwenhao@iie.ac.cn


Scenarios when Hardware TEEs are needed

 Users’ private data are delegated to untrusted (public) cloud servers

 Multi-sources (federated) deep learning training

 Machine-Learning As A Service

 Data sharing of genomic data or big data



Scenarios when Hardware TEEs are needed

 Crypto Techniques

➢ FHE、MPC、Searchable Encryption、ZK etc.

➢ Extremally High Communication and Computation Overhead

 Hardware Techniques

➢ Intel TXT，ARM Trustzone，Intel SGX，AMD SEV etc.



Hardware TEEs – A Review

Secure 

coprocessors

ARM 

Trustzone
XOM Intel TXT

TPM

Aegis
Bastion Intel SGX

AMD 

SME/SEV

1994 2000 20042003 2009 2010 2013 2016 2017

Intel 

TME/MKTME

Excluded：Intel CAT/CET/SMEP/SMAP/VT-x/PT



Intel SGX

Data Owner Remote Server

Outsourced

Computation

Untrusted 

Platform/OS/VMM

SGX 

Enclaves

◼Memory Encryption ◼Access Control ◼Remote Attestation



Intel SGX

 Enclave memory is stored within the Enclave Page Cache



Intel SGX

 Access Control

Security Checks 

are performed 

when address 

translation is 

loaded into TLB.



What is a side channel?

 Side channels from resources shared crossing multi-domains

1 2 3 4

SGX

Footprints on Shared Resources



Side channels – An example (Cache Timing
Attacks)

Memory Access

D
R

A
M

ca
ch

e
cache line

(B bytes)

memory block
(B bytes)

 The cache holds copies of aligned blocks of B bytes in main memory (blocks). 

 When a memory access instruction is processed, memory cell is searched in the cache 

first. 

 If a cache miss occurs, a full memory block is copied into the appropriate set (S 

possible sets) into one of the W cache lines.



Side channels – An example (Cache Timing
Attacks)

D
R

A
M

c
a

c
h

e



Side channels – An example (Cache Timing
Attacks)

1. Completely evict 
victim data from 
cache

2. Trigger a victim data 
access

3. Access attacker 
memory again and 
see which cache 
sets are slow

D
R

A
M

ca
ch

e



Side channels – An example (Controlled-
channel Attacks)

if (input)

func1() func2()

Page X

Page Y Page Z

Page fault sequence

X, Y

Page fault sequence

X, Z

input



Side channels – Others?

 Memory Hierarchy
➢ Data Caching creates fast and slow execution paths, leading to timing differences depending on 

whether data is in the cache or not

 Function Unit Contention
➢ Sharing of hardware leads to contention, whether a program can use some hardware leaks 

information about other programs

 Stateful Functional Units
➢ Program’s behavior can affect state of the function units (e.g. branching target), and other 

programs can observe the output (which depends on the state)

 Variable Instruction Execution Timing
➢ Execution of different instructions or same instruction with different operands takes different 

amount of time

 Physical Emanations
➢ Execution of programs affects physical characteristics of the chip, such as thermal changes (e.g. 

avx512), which can be observed



Can we reduce the interrupts for page
based attacks?

 1. Passive observation over the Access bit of a PTE



Can we reduce the interrupts for page
based attacks?

 2. Measuring the time between accesses to pages



Can we reduce the interrupts for page
based attacks?

 3. Clearing TLB entries from the other Hyper-thread to force a page table walk



Hyper-threading (SMT)

 Hyper-Threading enables new side channel attack surfaces

AS AS

Multiprocessor

AS: architectural state (eax, ebx, control registers, etc.)

AS AS

Hyper-Threading

Processor 
Execution 
Resources

Processor 
Execution 
Resources

Processor 
Execution 
Resources



Problems with Hyper-Threading

Core

Memory

Controller

L3

Package

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

L3

Package

Memory

Controller

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

Memory

Controller

L3

Package

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

L3

Package

Memory

Controller

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Interconnect

ISA
Software

Hardware

Core shared

Package shared

System shared



Naïve Solutions do not work

 Simply disabling Hyper-Threading

➢ No effective way to verify

• cpuid, rdtscp and rdpid are not supported in enclave mode

➢ Remote attestation

• Does not contain information about Hyper-Threading (before our work)

 Create a shadow thread from the enclave program to occupy the other 

hyper-thread

 How to reliably verify the physical-core co-location?



Closing HT-Side Channels on SGX with
Contrived Data Races
 Co-location test with Contrived Data Races

Physical Core

Protected 

thread

Shadow 

thread

L1 cache

Physical Core

Protected 

thread

Untrusted 

thread

L1 cache

Physical Core

Shadow 

thread

Untrusted 

thread

L1 cache

 Co-located: Both threads observe data races with high probability

 Otherwise: At least one observe data races with low probability

(latency ~ 190 cycles on Skylake)
(< 10 cycles) Cache coherence protocol



Closing HT-Side Channels on SGX with
Contrived Data Races

read write

read write

read write

read write

Protected 

thread

Shadow 

thread

• When co-located, communication time < execution time

• Each thread read the value written by the other thread with very high

probability.

Communication time



Closing HT-Side Channels on SGX with
Contrived Data Races

read write

read write

read write

read write

Protected 

thread

Shadow 

thread

• When not co-located, communication time > execution time

• Each thread read the value written by the other thread with very low

probability.

Communication time



Closing HT-Side Channels on SGX with
Contrived Data Races

Use of CMOV instructions

Different padding instruction patternsHypothesis Test based security model



Closing HT-Side Channels on SGX with
Contrived Data Races
 HyperRace: An LLVM based tool to eradicate all side-channel threats 

due to Hyper-Threading.



Conclusion

 The SGX design opens up many side channels.

 These side channels can be combined

➢ To make the attack stealthy and hard to detect

➢ To achieve fine-grained observation

 The attacker can even reduce the noises by controlling the SW/HW 

environment.

 The side channel threats against SGX can not be ignored.

 How to design future TEEs?

➢ HW/SW co-design?

➢ Real world implications



Thank you

Questions?




