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Scenarios when Hardware TEEs are needed

 Users’ private data are delegated to untrusted (public) cloud servers

 Multi-sources (federated) deep learning training

 Machine-Learning As A Service

 Data sharing of genomic data or big data



Scenarios when Hardware TEEs are needed

 Crypto Techniques

➢ FHE、MPC、Searchable Encryption、ZK etc.

➢ Extremally High Communication and Computation Overhead

 Hardware Techniques

➢ Intel TXT，ARM Trustzone，Intel SGX，AMD SEV etc.



Hardware TEEs – A Review
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Intel SGX
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Intel SGX

 Enclave memory is stored within the Enclave Page Cache



Intel SGX
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What is a side channel?

 Side channels from resources shared crossing multi-domains
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Side channels – An example (Cache Timing
Attacks)
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 The cache holds copies of aligned blocks of B bytes in main memory (blocks). 

 When a memory access instruction is processed, memory cell is searched in the cache 

first. 

 If a cache miss occurs, a full memory block is copied into the appropriate set (S 

possible sets) into one of the W cache lines.



Side channels – An example (Cache Timing
Attacks)
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Side channels – An example (Cache Timing
Attacks)

1. Completely evict 
victim data from 
cache

2. Trigger a victim data 
access
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Side channels – An example (Controlled-
channel Attacks)

if (input)
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Side channels – Others?

 Memory Hierarchy
➢ Data Caching creates fast and slow execution paths, leading to timing differences depending on 

whether data is in the cache or not

 Function Unit Contention
➢ Sharing of hardware leads to contention, whether a program can use some hardware leaks 

information about other programs

 Stateful Functional Units
➢ Program’s behavior can affect state of the function units (e.g. branching target), and other 

programs can observe the output (which depends on the state)

 Variable Instruction Execution Timing
➢ Execution of different instructions or same instruction with different operands takes different 

amount of time

 Physical Emanations
➢ Execution of programs affects physical characteristics of the chip, such as thermal changes (e.g. 

avx512), which can be observed



Can we reduce the interrupts for page
based attacks?

 1. Passive observation over the Access bit of a PTE



Can we reduce the interrupts for page
based attacks?

 2. Measuring the time between accesses to pages



Can we reduce the interrupts for page
based attacks?

 3. Clearing TLB entries from the other Hyper-thread to force a page table walk



Hyper-threading (SMT)

 Hyper-Threading enables new side channel attack surfaces

AS AS

Multiprocessor

AS: architectural state (eax, ebx, control registers, etc.)

AS AS

Hyper-Threading

Processor 
Execution 
Resources

Processor 
Execution 
Resources

Processor 
Execution 
Resources



Problems with Hyper-Threading
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Naïve Solutions do not work

 Simply disabling Hyper-Threading

➢ No effective way to verify

• cpuid, rdtscp and rdpid are not supported in enclave mode

➢ Remote attestation

• Does not contain information about Hyper-Threading (before our work)

 Create a shadow thread from the enclave program to occupy the other 

hyper-thread

 How to reliably verify the physical-core co-location?



Closing HT-Side Channels on SGX with
Contrived Data Races
 Co-location test with Contrived Data Races
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 Co-located: Both threads observe data races with high probability

 Otherwise: At least one observe data races with low probability

(latency ~ 190 cycles on Skylake)
(< 10 cycles) Cache coherence protocol



Closing HT-Side Channels on SGX with
Contrived Data Races
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• When co-located, communication time < execution time

• Each thread read the value written by the other thread with very high

probability.
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Closing HT-Side Channels on SGX with
Contrived Data Races
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Closing HT-Side Channels on SGX with
Contrived Data Races

Use of CMOV instructions

Different padding instruction patternsHypothesis Test based security model



Closing HT-Side Channels on SGX with
Contrived Data Races
 HyperRace: An LLVM based tool to eradicate all side-channel threats 

due to Hyper-Threading.



Conclusion

 The SGX design opens up many side channels.

 These side channels can be combined

➢ To make the attack stealthy and hard to detect

➢ To achieve fine-grained observation

 The attacker can even reduce the noises by controlling the SW/HW 

environment.

 The side channel threats against SGX can not be ignored.

 How to design future TEEs?

➢ HW/SW co-design?

➢ Real world implications



Thank you

Questions?




