
Side Channel Risks in Hardware 
Trusted Execution Environments (TEEs)

Wenhao Wang (王文浩)

May 2019



About Me

 Research Associate Professor (副研究员) of Institute of Information 
Engineering, CAS

 Previously worked as a visiting researcher in Indiana University (with Prof.
XiaoFeng Wang)

 Research Interests
➢ System Security

➢ Computer Architectural Security

➢ Isolation with Hardware Features

➢ Privacy Preserving Computing Technologies 

➢ Cryptography (esp. Symmetric Cryptanalysis)

 Email：wangwenhao@iie.ac.cn

mailto:wangwenhao@iie.ac.cn


Scenarios when Hardware TEEs are needed

 Users’ private data are delegated to untrusted (public) cloud servers

 Multi-sources (federated) deep learning training

 Machine-Learning As A Service

 Data sharing of genomic data or big data



Scenarios when Hardware TEEs are needed

 Crypto Techniques

➢ FHE、MPC、Searchable Encryption、ZK etc.

➢ Extremally High Communication and Computation Overhead

 Hardware Techniques

➢ Intel TXT，ARM Trustzone，Intel SGX，AMD SEV etc.



Hardware TEEs – A Review

Secure 

coprocessors

ARM 

Trustzone
XOM Intel TXT

TPM

Aegis
Bastion Intel SGX

AMD 

SME/SEV

1994 2000 20042003 2009 2010 2013 2016 2017

Intel 

TME/MKTME

Excluded：Intel CAT/CET/SMEP/SMAP/VT-x/PT



Intel SGX

Data Owner Remote Server

Outsourced

Computation

Untrusted 

Platform/OS/VMM

SGX 

Enclaves

◼Memory Encryption ◼Access Control ◼Remote Attestation



Intel SGX

 Enclave memory is stored within the Enclave Page Cache



Intel SGX

 Access Control

Security Checks 

are performed 

when address 

translation is 

loaded into TLB.



What is a side channel?

 Side channels from resources shared crossing multi-domains

1 2 3 4

SGX

Footprints on Shared Resources



Side channels – An example (Cache Timing
Attacks)

Memory Access

D
R

A
M

ca
ch

e
cache line

(B bytes)

memory block
(B bytes)

 The cache holds copies of aligned blocks of B bytes in main memory (blocks). 

 When a memory access instruction is processed, memory cell is searched in the cache 

first. 

 If a cache miss occurs, a full memory block is copied into the appropriate set (S 

possible sets) into one of the W cache lines.



Side channels – An example (Cache Timing
Attacks)

D
R

A
M

c
a

c
h

e



Side channels – An example (Cache Timing
Attacks)

1. Completely evict 
victim data from 
cache

2. Trigger a victim data 
access

3. Access attacker 
memory again and 
see which cache 
sets are slow

D
R

A
M

ca
ch

e



Side channels – An example (Controlled-
channel Attacks)

if (input)

func1() func2()

Page X

Page Y Page Z

Page fault sequence

X, Y

Page fault sequence

X, Z

input



Side channels – Others?

 Memory Hierarchy
➢ Data Caching creates fast and slow execution paths, leading to timing differences depending on 

whether data is in the cache or not

 Function Unit Contention
➢ Sharing of hardware leads to contention, whether a program can use some hardware leaks 

information about other programs

 Stateful Functional Units
➢ Program’s behavior can affect state of the function units (e.g. branching target), and other 

programs can observe the output (which depends on the state)

 Variable Instruction Execution Timing
➢ Execution of different instructions or same instruction with different operands takes different 

amount of time

 Physical Emanations
➢ Execution of programs affects physical characteristics of the chip, such as thermal changes (e.g. 

avx512), which can be observed



Can we reduce the interrupts for page
based attacks?

 1. Passive observation over the Access bit of a PTE



Can we reduce the interrupts for page
based attacks?

 2. Measuring the time between accesses to pages



Can we reduce the interrupts for page
based attacks?

 3. Clearing TLB entries from the other Hyper-thread to force a page table walk



Hyper-threading (SMT)

 Hyper-Threading enables new side channel attack surfaces

AS AS

Multiprocessor

AS: architectural state (eax, ebx, control registers, etc.)

AS AS

Hyper-Threading

Processor 
Execution 
Resources

Processor 
Execution 
Resources

Processor 
Execution 
Resources



Problems with Hyper-Threading

Core

Memory

Controller

L3

Package

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

L3

Package

Memory

Controller

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

Memory

Controller

L3

Package

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

L3

Package

Memory

Controller

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Interconnect

ISA
Software

Hardware

Core shared

Package shared

System shared



Naïve Solutions do not work

 Simply disabling Hyper-Threading

➢ No effective way to verify

• cpuid, rdtscp and rdpid are not supported in enclave mode

➢ Remote attestation

• Does not contain information about Hyper-Threading (before our work)

 Create a shadow thread from the enclave program to occupy the other 

hyper-thread

 How to reliably verify the physical-core co-location?



Closing HT-Side Channels on SGX with
Contrived Data Races
 Co-location test with Contrived Data Races

Physical Core

Protected 

thread

Shadow 

thread

L1 cache

Physical Core

Protected 

thread

Untrusted 

thread

L1 cache

Physical Core

Shadow 

thread

Untrusted 

thread

L1 cache

 Co-located: Both threads observe data races with high probability

 Otherwise: At least one observe data races with low probability

(latency ~ 190 cycles on Skylake)
(< 10 cycles) Cache coherence protocol



Closing HT-Side Channels on SGX with
Contrived Data Races

read write

read write

read write

read write

Protected 

thread

Shadow 

thread

• When co-located, communication time < execution time

• Each thread read the value written by the other thread with very high

probability.

Communication time



Closing HT-Side Channels on SGX with
Contrived Data Races

read write

read write

read write

read write

Protected 

thread

Shadow 

thread

• When not co-located, communication time > execution time

• Each thread read the value written by the other thread with very low

probability.

Communication time



Closing HT-Side Channels on SGX with
Contrived Data Races

Use of CMOV instructions

Different padding instruction patternsHypothesis Test based security model



Closing HT-Side Channels on SGX with
Contrived Data Races
 HyperRace: An LLVM based tool to eradicate all side-channel threats 

due to Hyper-Threading.



Conclusion

 The SGX design opens up many side channels.

 These side channels can be combined

➢ To make the attack stealthy and hard to detect

➢ To achieve fine-grained observation

 The attacker can even reduce the noises by controlling the SW/HW 

environment.

 The side channel threats against SGX can not be ignored.

 How to design future TEEs?

➢ HW/SW co-design?

➢ Real world implications



Thank you

Questions?




