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Abstract. Software Guard Extension (SGX) is a hardware-based trusted execution
environment (TEE) implemented in recent Intel commodity processors. By isolating
the memory of security-critical applications from untrusted software, this mechanism
provides users with a strongly shielded environment called enclave for executing
programs safely. However, recent studies have demonstrated that SGX enclaves
are vulnerable to side-channel attacks. In order to deal with these attacks, several
protection techniques have been studied and utilized.
In this paper, we explore a new pattern history table (PHT) based side-channel attack
against SGX named Bluethunder, which can bypass existing protection techniques and
reveal the secret information inside an enclave. Comparing to existing PHT-based
attacks (such as Branchscope [ERAG+18]), Bluethunder abuses the 2-level directional
predictor in the branch prediction unit, on top of which we develop an exploitation
methodology to disclose the input-dependent control flow in an enclave. Since the
cost of training the 2-level predictor is pretty low, Bluethunder can achieve a high
bandwidth during the attack. We evaluate our attacks on two case studies: extracting
the format string information in the vfprintf function in the Intel SGX SDK and
attacking the implementation of RSA decryption algorithm in mbed TLS. Both
attacks show that Bluethunder can recover fine-grained information inside an enclave
with low training overhead, which outperforms the latest PHT-based side channel
attack (Branchscope) by 52×. Specifically, in the second attack, Bluethunder can
recover the RSA private key with 96.76% accuracy in a single run.
Keywords: Software Guard Extension · Side-channel Attacks · Branch Prediction
· 2-level Directional Predictor

1 Introduction
The Hardware-based Trusted Execution Environment (TEE) is a promising technique
to enable secure computation. By running software within an isolated environment, a
TEE protects software resources from being accessed by untrusted applications or the
operating system (OS). ARM’s TrustZone [ARM08], Intel’s Trusted Execution Technol-
ogy (TXT) [Gre12] and Software Guard Extensions (SGX) [Int14] are widely deployed
commodity hardware-based TEEs. Among these TEE implementations, Intel’s SGX is
drawing significant attention these years because of its strong security guarantee, which
enables a variety of new applications such as secure data analysis [SCF+15] and secure
distributed computing [DSC+15, BWG+16].
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However, recent researches demonstrated that SGX is vulnerable to the following
side-channel attacks: page table based attacks [VBWK+17, XCP15], cache-based at-
tacks [BMD+17, GESM17, HCP17, SWG+17] and branch prediction unit (BPU) based
attacks [ERAG+18, LSG+17, CCX+19]. Compared to the other two kinds of attacks,
BPU-based attacks are getting considerable attention due to the following two reasons:
first, most of current SGX protection approaches aim to defend against page table based
and cache-based attacks, leaving the secrets in the enclave vulnerable to BPU-based attacks;
Second, BPU-based attacks can identify fine grained control flow information inside an
enclave (i.e., instruction level v.s. page level and cache line level).

The branch target buffer (BTB) and the pattern history table (PHT) are two main
components in the BPU. Most of existing BPU-based side-channel attacks against en-
claves [CCX+19, LSG+17] leverage the BTB to conduct attacks. By abusing BTB entry
collisions, the attacker can infer or even mislead the execution direction of a target branch
in the enclave. However, BTB-based attacks can be prevented by current mitigation
techniques [HLLP18, ABPK07, Int18]. Different from BTB-based attacks, PHT-based
attacks are the ones which can still break through current protection mechanisms. Branch-
scope [ERAG+18] firstly performs a PHT-based attack against SGX. By manipulating
hashing collisions in the bimodal predictor (namely, the 1-level predictor), this attack can
extract fine-grained information of a target enclave. Nevertheless, Branchscope needs to
execute a large number of (i.e., 100,000) branches for activating the vulnerable predictor
before each detection, which causes considerable training overhead during the attack and
limits the usage of this attack.

In this paper, we propose Bluethunder1, a new PHT-based attack which can reveal fine-
grained control flows of an enclave program running on real SGX hardware. Bluethunder
abuses collisions in the 2-level predictor as a side channel. In contrast to Branchscope,
which activates the bimodal predictor by executing a large number of branches for each
detection, Bluethunder only needs to activate the 2-level predictor predictor once during
the attack, which speeds up the attack significantly. Furthermore, since the PHT table is
not flushed upon context switches and is shared between the 2 hyper-threads running on
the same physical core, Bluethunder is still effective on the processor after updating the
latest microcode patches or disabling SMT.

However, exploiting such channel on the 2-level predictor is not so straightforward
in practice because 1 since both the recent branch history and the address of the
target branch are considered when indexing the 2-level predictor entries [LMB+], different
entries may be used in different contexts even though predicting for the same target
branch. As a result, it is hard for the attacker to construct entry collisions in the 2-level
predictor. 2 Although it has been disclosed that the key part of the 2-level predictor
is a n-bit PHT [ERAG+18], the value of n has not been disclosed to the public; 3
Current BPU-based attacks usually require both the attacker and the victim processes
to be executed in a sequential order (e.g., first the attacker trains the predictor, then
the victim executes the code, and the attacker detects the state changes at last), which
limits the temporal resolutions of the attacks. To overcome these challenges, we developed
three novel exploitation techniques: 1 fixing the branch history of the victim’s core by
interrupting the SGX enclave and 2 reverse-engineering the inner logic of the entries in
the 2-level predictor; 3 proposing a detection method which can improve the temporal
resolution of the attack by adjusting the branch directions of the attacker’s target branch
dynamically.

We evaluate Bluethunder against an SGX enclave on a recent CoffeeLake processor,
targeting both the vfprintf function in SGX SDK and the sliding-window RSA-2048
decryption algorithm in mbed TLS (Section 6). Both of the experiments show that our

1We use Bluethunder to represent lightning (since its color is blue) and thunder, which is fast and
powerful.
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attack can outperform the latest PHT-based side channel attack (Branchscope) by 52×.
Specifically, in the second experiment, Bluethunder extracts the whole 2048-bit private key
with 96.76% accuracy by running the decryption only once. The overhead of Bluethunder
for recovering one bit is 1.85×104 cpu cycles on average, which is only 1.9% of Branchscope
(9.56 × 105 cpu cycles).

In summary, the main contributions of this paper are:
• Novel PHT-based attack. We introduce Bluethunder, a new PHT-based side-channel
attack to extract the control flow of an enclave process. We also reverse-engineer the
inner logic of the PHT entries in the 2-level predictor. To the best of our knowledge,
this is the first side-channel attack on the 2-level directional predictor, which expands
our understanding of side-channel attacks against SGX.

• New Techniques. 1 We present a new method for constructing a given branch history
with only 93 branches. By using this method, we recover the branch history information
of an enclave interrupt. 2 We propose a novel detection technique which enables the
attacker to monitor the enclave’s actions in a high temporal resolution, without caring
about when the target instruction in the enclave is executed. 3 Bluethunder is the
first attempt to use SGX interrupts for fixing the branch history. By interrupting the
enclave just before the target branch, the attacker can ensure that the branch history
is the same each time when the target branch in the enclave program is executed.

• Implementation and Evaluation. We implement Bluethunder on real SGX hardware
with the latest hardware patches against speculative execution attacks, and evaluate
this implementation on two case studies: attacking the vfprintf function and the
RSA algorithm. We also confirm Bluethunder on both scenarios when the attacker
and victim run on 2 hyper-threads logical cores, and on a same logical core without
hyper-threading.

Responsible disclosure. We have disclosed Bluethunder to the security team at Intel
before releasing our study to the public. The implementation of Bluethunder against SGX
will be open sourced later.

2 Background
2.1 BPU
The BPU is an optimization design of modern pipelined processors. By predicting the
possible execution path of a process, the BPU can speed up the fetching process in a
processor design, which rescues the processor from waiting for the completion of the
previous instructions.

Figure 1 illustrates one possible design of the BPU, which has two main components:
the branch directional predictors and the BTB. The branch directional predictors are for
predicting the possible jump direction (jump or not) of a branch instruction; while the
BTB is for predicting the jump destination address of this branch. When a branch comes,
the BPU usually uses one branch directional predictor to predict the possible execution
direction of this branch. If the prediction result turns out to be taken (namely jump), the
instructions starting from the address predicted by the BTB will be fetched and executed
in advance; or if the branch is predicted to be not-taken, target address prediction made
by the BTB will be ignored. At the same time, the predictor is updated according to the
actual jump directions of the incoming branch.

PHT. The main component in a branch directional predictor (i.e., the bimodal predictor
or the 2-level one) is PHT, which is a recording table containing several n-bit saturating
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Figure 2: The finite state machine of
an n-bit saturating counter. When this
counter is in the taken mode, its predic-
tion output will be taken, and vice versa.

counters. When a directional predictor works, one PHT entry in it can be selected for
predicting the possible direction of the coming branch. After this branch is actually
executed, the counter given by the relative entry of the PHT is updated. A finite state
machine (FSM) description of updating an n-bit saturating counter is given in Figure 2. If
the counter value is less than 2n−1, this counter is in a “not-taken mode”, which means
the direction predicted is “not-taken”; otherwise, the counter is in a “taken mode” and the
prediction made is “taken”. For example, a 3-bit saturating counter with the value 0 is in
the “not-taken mode”; while another one with the value 4 is in the “taken mode”.

The Bimodal/2-Level Predictor. The bimodal predictor and the 2-level predictor are
two main branch directional predictors in modern processors. The bimodal predictor
exploits the observation that the branch direction outcome has a relationship with the
previous history of this branch; while the 2-level predictor [YP91] believes that the outcome
is also affected by the jump history of other recent branches.

When a branch first comes, the BPU usually chooses the bimodal predictor for predicting
the possible execution direction of this branch [ERAG+18]. However, if this predictor
makes mistakes several times, the BPU will select the 2-level predictor instead in order to
achieve high performance. A selector table in the BPU (as shown in Figure 1) can identify
which predictor is likely to perform better for the coming branch based on the previous
history.

Although both the bimodal and the 2-level predictors [YP91] rely on a PHT table
for predictions, their PHT indexing algorithms are different. The bimodal predictor only
considers the address of the target branch when indexing; while the 2-level predictor
considers both the address of the target branch and the recent branch history, which is
recorded in the branch history buffer (BHB), when indexing entries [LMB+, H+18]. Also,
their prediction accuracy is different. Since the 2-level predictor utilizes more branch
information, its prediction results can be more confident than those made by the bimodal
predictor in a number of scenarios.

2.2 SGX
Intel SGX [CD16] is an implementation of hardware-based TEE that is supported by
modern Intel CPUs (since Skylake). To enforce the physical memory isolation in hardware,
SGX introduces a set of new CPU instructions which can be used to create and manage
isolated software components [MAB+13], called enclaves. The data in enclaves cannot
be accessed by untrusted software running in non-enclave environments (i.e., privileged
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software like the operating system and the hypervisor). However, since SGX enclaves can
live in the virtual address space of conventional processes via an SGX instruction set, these
enclaves are able to access the memory region of non-enclave processes easily.

Non-enclave code and enclave code interaction. Enclaves can only be entered or exited
through a few predefined entry points. The EENTER and EEXIT instructions transfer control
between the untrusted software and an enclave. When an interrupt or exception happens,
the processor performs an Asynchronous Enclave Exits (AEX), which saves the registers
of the interrupted enclave into the enclave memory called State Save Area (SSA), clears
the CPU registers, and transfers control to a pre-specified instruction outside the enclave.
After the interrupt or exception is handled, an ERESUME instruction is executed, which
reloads the previously saved context from the SSA frame and continues execution in the
enclave.

3 Threat Model
We assume the standard SGX threat model, in which the attacker has full control over
privileged software, such as the operating system.

First, we assume that the attacker has access to the target enclave program’s source
code and/or binary. By analyzing these resources, the attacker can obtain the detailed
behavior of an enclave, especially this enclave’s control flow and jump information (i.e., the
source address and the destination address) of branches. The programs with obfuscated
code (e.g., code from remote servers) are outside the scope of our attack.

Second, we assume that the attacker and victim programs are co-resident on the same
physical core. This is because the BPU is shared at logical core level, but separated
at physical core level. Such co-residency can be forced easily by using thread binding
techniques [EPAG16, LSG+17].

Third, the attacker is able to measure the misprediction information of her own
branches. Both the performance monitoring counters (PMC) [LSG+17] and the rdtscp
instruction [ERAG+18, LSG+17] are available for this measurement.

Fourth, the attacker can interrupt an enclave just before the target branch in the
enclave is executed, ensuring that no other jump actions are taken before the execution of
the target branch. This ability enables the attacker to construct the same recent branch
history as the enclave’s, as well as to control the execution speed of the enclave. Although
this goal is hard to achieve when interrupting a common user-level process, it can be
achieved perfectly when interrupting an enclave, since the attacker can leverage the OS’s
control over hardware timer devices [VBPS17].

4 The Bluethunder Attack
4.1 Overview
The Bluethunder attack aims to obtain the fine-grained control flow of an enclave program
by manipulating the 2-level directional predictor in the BPU. To achieve this goal, the
attacker should have the ability to activate the 2-level predictor as well as to abuse this
predictor to leak secrets in an enclave. In general, the Bluethunder attack consists of the
following two stages (shown in Figure 3):
• Stage 1: Activating the 2-level predictor. We force the predictors other than the 2-level
predictor to shut down by imposing several mispredictions on them, ensuring that
the 2-level predictor is eventually activated and used by processes on the target core.
Executing the target branch with the directions described in a TBDV-Q (target branch
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Figure 3: Overview of the Bluethunder attack. The two stages are “Activating the 2-level
predictor” and “Leaking Secrets” respectively.

direction vector for quiescing, Section 4.2) direction vector can mislead the BPU to
make mispredictions easily. This preparation stage is only executed once during the
attack.

• Stage 2: Leaking secrets. Two steps are included in this stage: constructing collisions
and abusing collisions. First, the hashing collisions, which are caused by predicting
different branches through the same PHT entry, are established between the victim
(i.e., in an enclave environment) and the attacker (i.e., in a non-enclave environment)
processes. We propose a simple method to construct a given branch history, followed
by an advanced method which can be used to recover the branch history of an enclave
interrupt. This advanced approach can also reduce the training cost of our attack since
only 93 jump instructions are required for history training. Second, the attacker probes
the state changes of the collision entries by executing the target branch with a TBDV-A
(target branch direction vector for attacking, Section 4.3) vector. By analyzing these
probing results, the attacker can infer the control flow of the target enclave program,
as well as the secret in it. This attacking stage must be executed for each detection
during the attack.

4.2 Activating the 2-Level Predictor
In this section, we describe how to activate the 2-level predictor in the BPU, which is the
first step of our Bluethunder attack against SGX. We turn to present the way to abuse
this predictor for attacks in Section 4.3.

Our activating method is based on the following observation: the 2-level predictor is
chosen by the BPU for predictions only when the bimodal predictor cannot predict well. As
a result, it is viable to shut down the bimodal predictor by imposing several mispredictions
on this predictor. We construct an efficient instruction sequence needed to shut down
the bimodal predictor and correctly train the 2-level predictor with a conditional branch
wrapped up in a loop. The execution directions of this conditional branch (i.e., whether
the branch is taken or not) is determined by a TBDV-Q direction vector as follows.
• The TBDV vector. A “target branch direction vector (TBDV)” is a basic vector which
is used to form a TBDV-Q vector. The function of this TBDV vector is to mistrain
the bimodal predictor. Since the bimodal predictor uses 2-bit saturating counters for
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predictions [ERAG+18], any direction vector which does not match this pattern can lead
to mispredictions of the target branch. TBDV is generated as an L-bit (0 < L < 100)
vector with randomized 0/1 bits, where 0 means not-taken and 1 means taken.

• The TBDV-Q vector. The TBDV-Q vector is designed to mistrain the bimodal predictor
as well as to train the 2-level predictor. It simply repeats the TBDV by N times.

fa
ilu

re
 r

at
e

0

0.2

0.4

0.6

0.8

1

TBDV length
0 20 40 60 80 100

16 repeats
32 repeats
64 repeats

Figure 4: The failure rate of executing
TBDVs with different lengths L.

su
cc

es
s 

ra
te

0

0.2

0.4

0.6

0.8

1

TBDV repeat times
0 20 40 60 80

Figure 5: The success rate of executing
“111,000” with different repeat times N .

To verify whether the TBDV-Q vector is capable of shutting down the bimodal predictor
and activating the 2-level predictor, we check the prediction result of the last TBDV in the
TBDV-Q (e.g., using PMC or timing information). If all the directions of the last TBDV
are predicted correctly, we conclude that the pattern of this TBDV has been learnt by the
BPU successfully. We ensure that the bimodal predictor cannot achieve that by setting a
large L and randomized 0/1 bits, then we can conclude that the 2-level predictor has been
selected and trained. Otherwise, we cannot infer which directional predictor is being used
by the BPU.

The remaining task is to find a proper setting of L and N . Firstly, we’d like to figure
out the value for L (0 < L < 100) such that the TBDV could mistrain the bimodal
predictor, but can be predicted well by the 2-level predictor. It should be noticed that L
cannot be too small (to mis-train the bimodal predictor) nor too big (to fit into the size of
the PHT used by the 2-level predictor). We used fixed values for N (i.e., 16, 32 and 64),
which are large enough to train the 2-level predictor and can be used to detect whether
the bimodal predictor is disabled. It is worth noting that the value of N is not limited to
multiples of 16. We test each length for 500 cases, repeating 3 tests for each case. Any
success among the 3 repeating tests proves that this TBDV-Q is able to activate the 2-level
predictor. The results are shown in Figure 4. It can be seen when the length L is less
than or equal to 22, the BPU almost always predicts the target branch successfully, which
means that the 2-level predictor is activated. Also worth noting is that when L equals 33,
49, 65, 81, or 97 (i.e., the distances between which are multiples of 16), the predictions fail
a lot. We conjecture this is related to the structure of the PHT table. Since this does not
affect our attack, we plan to conduct another research to explain this effect in the future.

In order to reduce the value of N , we perform another experiment by running TBDV-Qs
with varied N . All of the tested TBDV-Qs are generated with the TBDV “111,000”, since
this TBDV will be finally used in our attacks. We test 500 cases for each N in this
experiment and record the success rate of each N . The results are shown in Figure 5. We
find that the 2-level predictor can be activated and trained by executing the TBDV-Q
vector containing at most 7 TBDV segments.

In the following sections if not explicitly stated otherwise the TBDV-Q vector where
L = 6 and N = 7 (i.e., the one which repeats the TBDV “TTTNNN” for 7 times) is chosen
to activate the 2-level predictor.



328 Bluethunder: A 2-level Directional Predictor Based Side-Channel Attack against SGX

4.3 Leaking Secrets
After activating the 2-level predictor, we move to manipulate this predictor for side-channel
attacks. We first describe the way to construct entry collisions between an enclave process
(i.e., the victim process) and a non-enclave process (i.e., the attacker process), then turn
to abuse these collisions. For simplicity, we let the attacker process and victim process run
on two hyper-threads in a same physical core. However, as PHT states are not flushed
during context switches, similar techniques could also be used if hyper-threading is not
supported and the two processes run on the same physical core2.

4.3.1 Constructing Collisions

The main component of the 2-level predictor is a PHT table which has several recording
entries. In order to construct entry collisions, we have the assumption that the 2-level
predictor usually makes the same predictions in the same contexts. In other words, the
same PHT entry is used in this case. If the context can be recovered, its relative PHT
entry can be accessed even though the entry indexing function is opaque. According to
Ben Lee et al. [LMB+], the branch history and the address of the branch target are two
main elements affecting the context. As a result, these two elements have an influence on
the PHT indexing.

To verify whether the entry indexing of the 2-level predictor is only affected by the two
elements described in [LMB+], we carried out another experiment. In this experiment, the
victim and attacker threads run the same piece of code. This code contains several taken
branches called training sequence and one branch following them called target branch. The
training sequence is for fixing the branch history of a logical core, and the target branch
is for activating the 2-level predictor and manipulating the target 2-level predictor entry.
Note that the number of branches in the training sequence should be enough for fixing
the branch history. The execution of the target branch can be divided into two parts:
the activating part is used to activate the 2-level predictor; and the abusing part is to
test whether hashing collisions of the 2-level predictor have been constructed successfully.
We first run the attack process alone, recording the attacker’s misprediction result of
the abusing part. Then we run the victim and attacker programs simultaneously across
hyper-threaded cores, also record the attacker’s misprediction result of the abusing part
during the test. We use semaphores to force the two processes to execute each branch
in turn precisely. By comparing the misprediction results of the two tests, we can infer
whether hashing collisions have been constructed successfully.

The attacker’s misprediction results of the two tests are given in Table 1. If the attacker
process runs alone, only 4 out of the 11 predictions are incorrect. While the attacker runs
with the victim, 9 mispredictions occur. This difference shows that the predictions of the
attacker’s branch operations can be influenced by the victim. We repeat this test several
times, and the results are always the same.

We also reduce the number of taken branches in the training sequence, detecting the
minimum number required for fixing the branch history. The result shows that 93 taken
branches are enough to ensure that the branch history is fixed. To check the effect of
non-taken branches, we add several not-taken branches into the attacker’s code and nop
instructions into the victim’s code to keep the invariance of the branch addresses between
the two programs. The result shows that no matter how many not-taken branches are
added or where they are, the entry collisions still exist. In conclusion, not-taken branches
have no effects on the entry indexing of the 2-level predictor.

Based on the experiment above, we draw the conclusion that if both the branch history
and the address of the target branch are the same between two processes, these processes

2We confirmed Bluethunder on the platforms available to us, with the latest microcode patches at the
date of writing.
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Table 1: The impact of the victim program on the misprediction result of the attacker
program. M – misprediction, H – hit (correct prediction), N – not taken, T – taken.

Attacker Alone Attacker and victim

Index Attacker
Direction

Attacker
Result

Victim
Direction

Victim
Result

Attacker
Direction

Attacker
Result

i T M T M T M
i + 1 T M T M T M
i + 2 N H T H N M
i + 3 N H T H N M
i + 4 N H T H N M
i + 5 N H T H N M
i + 6 N H T H N M
i + 7 N H T H N M
i + 8 N H T H N M
i + 9 T M T H T H
i + 10 T M T H T H

will share the same 2-level predictor entry. However, although it is easy to infer the address
of the target branch, it is pretty complicated to recover the branch history of the victim
process since its value varies in different contexts. A simple way for the attacker to recover
the victim’s branch history is to executes the same flow of the branch (or jump) instructions,
whose addresses are exactly the same as those in the victim program. However, since the
recent branch history changes in different contexts, an enclave may use different predictor
entries for predicting the target branch each time. As a result, the attacker needs to catch
up with the execution of the victim enclave and monitor the right predictor entries during
the attack, which is difficult to achieve in real-world attacks. To deal with this difficulty,
we send interrupts to the enclave, in order to fix the branch history of the enclave’s core.
This is because when an interrupt comes during the enclave’s execution, this enclave will
be suspended and several interrupt handling operations defined in the kernel will be taken.
We observe that these handling operations (e.g., resuming the enclave) usually form the
branch history of the target core into a fixed state. This is because the last operations are
always about interrupt recovery, which is the same for any APIC interrupt. Since enough
jump operations are included in the last operations, they can force the branch history to
achieve a fixed state. As a result, these operations can be used as the training sequence
for our attacks. At the same time, since some pieces of code the enclave executes for
interrupt handling are secret to us (e.g., the leaf function ERESUME), we cannot recover the
interrupt history by simply copying the target code. Instead, we turn to detect the branch
history updating algorithm of recent Intel processors, and demonstrate an advanced way
for recovering the branch history after an enclave interrupt.

Recovering the Branch History. In recent Intel processors, both the target branch
address and the recent branch history are used to index PHT entries. It is observed that in
Intel Haswell processors, the prediction scheme uses a global branch history buffer, which
contains information about the last K (K = 28 for Haswell) branches [H+18, KHF+19].
The authors found it is likely that each update of the history buffer shifts the history buffer
by 2 bits, and the least significant 2 bits of the new history buffer are calculated using
the last 2 bits of the destination address and bits 0x40 and 0x80 of the source address
of the latest branch. In this section, we try to understand the branch history updating
algorithm on our testbed with Skylake and CoffeeLake processors and show how to recover
the enclave’s branch history following an interrupt.

According to recent studies [H+18, KHF+19], we observed that the branch history
update can be controlled by manipulating the last two bits of the latest branch’s destination
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Figure 6: Recovering the branch history when 2 branches in the victim process have been
recovered. The grey block in the victim program is the branch history the attacker needs
to recover, and the grey block in the attacker program is the history result recovered.

address in Haswell processors. In order to test whether this observation also works for the
Skylake and the CoffeeLake processors, we do the following test based on the previous
conclusion that 93 jumps are enough for constructing a given branch history. We create
two processes in this test, namely the attacker and the victim. In the victim’s code, we
add 93 jumps and a target branch. We also add 93 branches and a target branch into
the attacker’s code, but only the last 92 jumps and the target branch are the same as
the victim’s. We vary the jump destination of the first jump instruction added in the
attacker’s code, while fixing the source address of this jump. By checking whether the
two processes can affect each other, we can infer that an entry collision occurs. Since the
addresses of the two target branches in the two processes are the same, we can deduce
that the branch history of the two processes is the same. The test result shows that entry
collisions occur only when the last two bits of the first jump’s destination are fixed values
(e.g., 01). This result means that in either Skylake or CoffeeLake processors, only the last
two bits of a jump’s destination address are enough to represent the effects of this jump
on the branch history.

We make use of this result to recover the enclave’s branch history after an interrupt
(as shown in Figure 6). Two steps are included in this recovery: first, we add 93 jump
instructions, called recovered jumps, into the attacker’s code. The source addresses of
these jumps are fixed upon insertion, while their destination addresses can be changed. We
also add 93 jump instructions, which are called test jumps (T_Jmp), and a target branch
in both the victim’s code and the attacker’s code. Note that the source and destination
addresses of each victim’s T_Jmp instruction (or the target branch) should be the same
as that of the corresponding one in the attacker’s code. Now the two target branches
share the same 2-level predictor entry for predictions, since the added 93 branches can
flush the recent branch history and set the branch history of the two processes to be the
same. Then, we delete the last (i.e., 93rd) T_Jmp instruction in both processes, and
change the destination of the last (i.e., 93rd) recovering jump (R_Jmp) instruction in
the R_Jmp sequence. By checking whether an entry collision has been established, we
can infer when the branch history of the two processes is the same. According to the
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Table 2: The result of executing the attacker’s target branch with the TBDV
“000,000,111,111”, in which “0” means “not taken” and “1” means “taken” (running
the attacker process alone). M – misprediction, H – hit (correct prediction), N – not taken,
T – taken.

Index Attacker Direction Attacker Result

i N M
i + 1 N M
i + 2 N M
i + 3 N M
i + 4 N H
i + 5 N H

Index Attacker Direction Attacker Result

i + 6 T M
i + 7 T M
i + 8 T M
i + 9 T M
i + 10 T H
i + 11 T H

conclusions drawn above, four times are enough for recovering the last R_Jmp instruction
in the attacker’s program. Next, we delete the penultimate (i.e., 92nd ) T_Jmp instruction
in both processes, and recover the jump destination of the penultimate (i.e., the 92nd)
R_Jmp instruction by checking again. We repeat this step 93 times in total, and finally
the branch history after an enclave interrupt can be reconstructed. Figure 6 shows the
recovering details when the last two (i.e., 92nd and 93rd) R_Jmp instructions have already
been recovered.

4.3.2 Abusing collisions

By constructing entry collisions, the attacker has the ability to access the target entry in
the 2-level predictor. Now we try to abuse this entry to conduct Bluethunder attacks. We
start with detecting the inner working logic of a 2-level predictor entry. Then we try to
launch side-channel attacks by making use of this logic.

Detecting the 2-level predictor logic. Although it has been uncovered that the main com-
ponent in the 2-level predictor is a PHT with several n-bit saturating counters [ERAG+18],
the value of n is still unknown. To detect the value of n, we execute an attacker process
alone, which contains 93 training branches and one target branch. The TBDV we use is
“111 · · · 1000 · · · 0”, which has L1-bit 0s and L1-bit 1s. L1 is set to be 6 in this test. We
repeat this TBDV for 100 times and generate the final TBDV-Q for the target branch.
We noticed that this TBDV-Q vector can be used to quiesce the bimodal predictor and
activate the 2-level one. By executing the target branch with this vector and checking the
misprediction result of the target branch, we can infer the exact value of n.

The test result is presented in Table 2. After executing the target branch 4 times with
taken (or not-taken) directions, the 2-level predictor can be trained. In other words, there
can be at most 4 continuous mispredictions. For the worst case of training the 2-level
predictor whose PHT entry is an n-bit saturating counter, after 2n−1 mispredictions in the
use of the same PHT entry, the predictor can be trained. Hence, we conclude that n is 3.
In other words, the 3-bit saturating counters are utilized by the 2-level branch predictor.

In order to verify that this conclusion also works across SMT, we repeat this test with
two processes (i.e., the attacker and the victim) running on sibling cores this time, instead
of one process (i.e., the attacker) alone. By executing the same piece of code, these two
processes point to the same 2-level predictor entry. We utilize semaphores to force them
to execute the target branches one after the other. When the attacker (or the victim)
process executes the target branch with a not-taken direction, the value of this saturating
counter decreases by 1; otherwise, its value increases by 1. The saturating counter values
after each attacker’s (or victim’s) execution are listed in Table 3. This test result shows
that the execution directions of the two target branches can affect each other, and their
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Table 3: The result of executing the attacker’s target branch with the TBDV
“000,000,111,111”, in which “0” means “not taken” and “1” means “taken” (run both
processes together). M – misprediction, H – hit (correct prediction), N – not taken, T –
taken, Value After – the binary value of the saturating counter after executing the target
branch.

Index Victim
Direction

Victim
Result

Value
After

Attacker
Direction

Attacker
Result

Value
After

i N M 110 N M 101
i + 1 N M 100 N M 011
i + 2 T M 100 N M 011
i + 3 T M 100 N M 011
i + 4 N H 010 N H 001
i + 5 T M 010 N H 001
i + 6 T M 010 T M 011
i + 7 N H 010 T M 011
i + 8 N H 010 T M 011
i + 9 T M 100 T H 101
i + 10 N M 100 T H 101
i + 11 T H 110 T H 111

behaviours are in accordance to the FSM of a 3-bit saturating counter. For example, before
the execution of the i-th branch, the value of the 3-bit saturating counter is 7 (“taken
mode”), and its prediction result is taken. When the victim’s i-th not-taken target branch
comes, a misprediction occurs and the value of the saturating counter is updated to be
6. Then it is the attacker process’s turn. The attacker also executes her target branch
with a not-taken direction. Since the current value of the counter is 6 (also “taken mode”),
another misprediction occurs and the value of the saturating counter is updated to 5.

Manipulating the 2-level predictor. The predictor achieves a balanced state for predict-
ing a branch if the relative saturating counter used for the prediction reaches a critical
value. After updating to the critical value, the change of the saturating counter can cause
a different prediction of the branch direction. Both 2n−1-1 and 2n−1 are critical values
for the n-bit saturating counter. For a 3-bit saturating counter as an example, suppose
its current value is 3, which is a critical value. If a taken branch uses this counter for
the prediction, the counter is updated to 4, indicating a taken mode for the prediction;
otherwise, if a not-taken branch uses this counter, the counter changes to 2, staying at
the not-taken mode for the prediction. By monitoring the changes of the predictions, the
branching behaviors can be detected.

In order to set a saturating counter to the critical value, we adjust the branch directions
of the target branch dynamically. The next branch direction is set opposite to the predicted
direction. For example, if the relative 2-level PHT entry uses the saturating counter to
give a taken mode prediction, the attacker sets the direction for the target branch to be
not-taken, resulting in the decrease of the saturating counter; otherwise, if the saturating
counter currently gives a not-taken prediction, the attacker sets the direction for the
target branch to be taken, resulting in the increase of the saturating counter. We call
this direction vector which the attacker executes the “target branch direction vector for
attacking (TBDV-A)”.

Without the execution of the victim program, the TBDV-A which the attacker executes
should reach a stable state eventually, repeated with the basic sequence “TTTNNN”. The
explanation of this phenomenon is presented in Table 4. We suppose that after executing
the target branch i−1 times, the binary value of the 3-bit saturating counter is 101 (“taken
mode”). When the i-th not-taken branch comes, this counter will make a misprediction and
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Table 4: The relationship between the attacker’s execution and the value of the target
2-level predictor entry. M – misprediction, H – hit (correct prediction), N – not taken, T
– taken, Value Before (or After) – the binary value of the saturating counter before (or
after) executing the target branch.

Index Value Before Attacker Direction Attacker Result Value After

i 101 N M 100
i + 1 100 N M 011
i + 2 011 N H 010
i + 3 010 T M 011
i + 4 011 T M 100
i + 5 100 T H 101

Table 5: The corresponding relationship between the attacker’s execution directions and
the victim’s action. T – a taken branch, N – a not-taken branch

Case No. Attacker’s Sequence Victim’s Action

1 TTTNNN None
2 TTTNN N
3 TTTNNNN T
4 TTNNN T
5 TTTTNNN N
6 OTHER Noise

its value decreases by 1. Finding that the predictor makes mispredictions when predicting
a not-taken branch, the attacker learns that the target PHT entry is in the “taken mode”
now, and decides to run a not-taken branch next time. After repeating (i + 5) times, the
value of the relative saturating counter turns to 101 again. As a result, another turn of
the circle starts.

However, if the attacker process is run with the victim process, this stable state will
be broken. This is because both programs share the same 2-level PHT entry, and the
execution of the victim’s target branch has an influence on the execution of the attacker
program. Any irregular sequence in the attacker’s execution path which do not match the
“TTTNNN” may be caused by the victim process. By analyzing these irregular sequences,
the attacker can finally deduce the fine-grained control flow of the victim process. The
relationship between the possible irregular sequences and the victim’s actions are presented
in Table 5. If the number of “N” contained in the detected execution sequence is larger
than that of “T”, a target branch with a taken direction is executed by the victim process;
if the number of “N” contained in the detected execution sequence is smaller than that of
“T”, the victim should execute the target branch with a not-taken direction. For example,
if the execution direction sequence of the attacker’s target branch is “TTTNNNN”, we
conclude that the victim’s execution direction is “T”. This is because the attacker needs to
decrease the value of the saturating counter one more time in order to cancel the victim’s
effects on this counter.

Misprediction Measurement. Measuring the misprediction information of a branch is
necessary for conducting BPU-based side-channel attacks. A common method is to read the
PMC, which is also suitable to Bluethunder. Although PMC provides accurate information
of hardware events, it requires the user to have the system-level authority, which limits
its usage. So, we also try an alternative measurement approach utilizing the time stamp
counter (TSC). By tracking the number of cycles to execute a branch, the attacker can
infer whether it is incorrectly predicted, and thus the current state of the target 2-level
predictor entry. We use the rdtscp instruction to get a timestamp. Also, two mfence
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Table 6: Comparison between Bluethunder and other attacks against SGX.

Attack Spatial
Resolution Size Temporal

Resolution Detectability

TLBLEED [GRBG18] Page 4KB Medium Low
Prime+Probe [OST06] Cache-set 512B Medium High
MemJam [MWES19] Intra cache-line 4B Medium Medium
PORTSMASH [ABuH+19] Execution port uop High Low
Branchscope [ERAG+18] PHT entry instruction Low High
Bluethunder PHT entry instruction High Low

instructions are added before and after the rdtscp instruction, avoiding the out-of-order
execution of the load and store operations. Note that in Bluethunder attacks, the time
latency caused by the caching mechanism in this TSC-based measurement is neglectable.
This is because the instructions which are measured are frequently used, and they are
likely to be cached.

Comparison with other side channels. We also compare the Bluethunder attack with
other SGX attacks, and the result is shown in Table 6. It is worth noting that since no
shared memory exists between the victim enclave and the attacker, “Flush+Reload” [YF14]
and “Flush+Flush” [GMWM16] cannot be used. According to Table 6, Bluethunder is able
to recover instruction-level information, whose spatial resolution is much higher than page-
level [GRBG18] or cache-level attacks [OST06, MWES19]. Also, since Bluethunder does
not require cache eviction [OST06] or executing a large number of jump instructions for
training [ERAG+18], its detectability is low. As for the temporal resolution, Bluethunder
enjoys a high accuracy since its training overhead is extremely low. At the same time,
we note that both Bluethunder and PORTSMASH enjoy high temporal resolutions and
low detectability, and PORTSMASH can even achieve a higher spatial resolution than
Bluethunder. However, since Bluethunder abuses a totally different processor component,
it can bypass most of the defensive techniques, such as disabling SMT or preventing the
port contention, which are available to defend PORTSMASH attacks.

5 Implementation of Bluethunder
We implemented Bluethunder attacks based on SGX-Step [VBPS17], which is an attacking
framework against enclave programs with single-step interrupt execution control. Since
SGX-Step is able to interrupt each instruction in the enclave, the APIC interrupt handling
operations are executed just before each instruction. As a result, the recent branch history
before each instruction should be the same, and the same 2-level predictor entry is usually
selected for predicting the same target branch. By monitoring the entry affected by the
victim’s target branch, the attacker can infer the control flow of the victim process and
the secret in it.

In order to train the attacker’s branch history to be the same as the interrupt handling
operations, we construct a training branch sequence in the attacker’s code using the method
described in Section 4.3.1. It has been verified that by using the sequence generated,
hashing collisions can be established successfully. Based on the fact that both the branch
history and the address of the target address of the two processes are the same, the
attacker can share the same 2-level predictor entry with the victim (as shown in Figure 7).
Note that only 93 instructions are required in this training sequence. Considering that
Branchscope [ERAG+18] needs to execute 100,000 branches to train the BPU before each
detection, the training cost of Bluethunder is negligible.

The whole execution period of the victim program running inside the enclave is
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Figure 7: Implementation in an SGX-based environment. The same branch history and
the same PC lead to the same 2-level PHT entry.

monitored by the attacker. We rely on an open source tool called testp3 to measure
whether a misprediction occurs. To recognize when the victim’s target branch is interrupted,
Bluethunder records the address of each instruction interrupted in the enclave. This address
information can be provided by SGX-Step. Only the instruction whose address equals the
target branch’s address can be considered.

The rdtscp measurement is also implemented in this test. To improve accuracy, we add
a threshold-deciding logic into the attacker’s code, which can decide the timing threshold
between predictions and mispredictions dynamically according to the current state of
the processor. To further reduce the noise in our measurements, we also determine the
attacking window by recording the times of entering and leaving the enclave, respectively.
As the time spent for one instruction’s interrupt handling is much longer than that for
executing one instruction in the enclave, monitoring the execution time within an attacking
window can reduce the amount of noise significantly.

6 Evaluation
We performed Bluethunder attacks on a B360-HD3 mainboard with a CoffeeLake i7-8700
processor and 32GB DDR4-2400 memory. This platform runs Ubuntu 16.04 with a generic
64-bit Linux 4.15.0 kernel, equipped with SGX Driver 2.0. We use the taskset command
to bind the victim and attacker processes to a specific core, and the isolcpus command
to isolate these cores from certain requests scheduled from the operating system. We
demonstrate 2 attack cases when the attacker process and victim process run on two
hyper-threads on the same physical core, first against the vfprintf function (Section 6.1)
and then against the RSA implementation of the mbed TLS library (Section 6.2). We
also show the results against the RSA algorithm when hyper-threading is not supported
(Section 6.3).

6.1 Attacking Vfprintf Function
In order to demonstrate how Bluethunder reveals instruction-level secret information inside
an enclave, we focus on examples in which neither the controlled-channel attack nor the
cache-based attack can extract secret information ideally. Specifically, we choose the
vfprintf function defined in SGX SDK as our target, whose function is to print a format
string in an enclave. This function uses a switch-case statement to interpret the string
format, which can be leveraged by the attacker. However, since several control flows in
this switch-case statement are within a single page or even a single cache line, both the

3https://www.agner.org/optimize
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Figure 8: The error rate and time latency of different detection times.

controlled-channel attack and the cache-based attack cannot infer the fine-grained format
string information in this vfprintf function.

Compared to the attacks above, Bluethunder can disclose the format string information
by checking the switch-case statement in the vfprintf function. We set the string format
to be “%llx” and repeat this print action 100,000 times. The average error rates of the
experiments conducted with the CoffeeLake processor are presented in Figure 8. With
the increase of the attacker’s detection times, the delay of our attack increases linearly,
and the accuracy is also improved in our attack. When the number of detection times
is six, 17610 timestamps are required to recover one bit of the victim’s secret, and the
error rate is 0.83%. Since this error rate is the smallest one in our experiment, we choose
six to be the detection times for our attacks eventually. It is worth noting that the time
delay caused by the SGX-Step framework is not considered in this test. This is because
Bluethunder is independent of SGX-Step and by using other interrupting techniques, this
extra overhead can be decreased significantly.

We also test Bluethunder with the rdtscp measurement. To analyze the threshold of
predictions and mispredictions, we execute 20,000 samples branches (10,000 for predictions
and 10,000 for mispredictions separately) on the CoffeeLake processor. The result illustrates
that when the target branch is mispredicted, the target branch takes 31 cycles on average;
otherwise, the target branch takes 25 cycles on average. By configuring the threshold
between predictions and mispredictions carefully, the attacker is able to recover 87.93%
bits in a single test.

6.2 Attacking RSA Algorithm
We also launch Bluethunder against the mbed TLS Library4, which is a popular choice for
conducting encryption and decryption operations in SGX-based environments [LSG+17,
SLK+17, SLKP17]. It has been shown that the RSA algorithm implemented in this library
is vulnerable to control flow attacks [LSG+17]. The core function relating to the attacks
is named mbedtls_mpi_exp_mod (presented in Appendix A), which is used for modular
exponentiation calculations by leveraging the sliding-window exponentiation algorithm.
This function has two conditional branches whose execution directions are affected by
the private key directly. By detecting the execution directions of these two branches, the
attacker is able to uncover the control flow of the target process, and thus the private key
of the victim.

Our attack target is the decryption operation in the RSA-2048 algorithm. The enclave
calls this RSA decryption function defined in mbed TLS library directly, with a random
pair of keys generated by mbed TLS. The attacker’s goal is to recover the RSA private key
the victim (i.e., the enclave program) uses. We start the attacker process before the victim

4https://tls.mbed.org
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Figure 10: The accuracy of the two measurements with different detection times.

one, in order to provide the attacker with enough time to active the 2-level predictor and
initialize the value of the target entry.

The result illustrates that interrupts are conducted precisely in our attack, and the
core function mbedtls_mpi_exp_mod executes about 140 minutes. For each instruction, it
takes nearly 11810 cycles to resume the enclave and execute this instruction in the enclave,
while 6 million cycles to handle the incoming interrupt in the non-enclave environment.
Figure 9 demonstrates the execution directions of the attacker’s target branch, which are
affected by ten bits (341-350) of the private key. In order to make this figure be clear, we
only show the attacker’s execution directions which are affected by the enclave’s execution.
Take bit 341 as an example. The three red spots mean the attacker’s execution directions
are “TTT”, and the four blue spots mean the attacker’s execution directions are “NNNN”.
According to case 3 in Table 5, we can easily draw the conclusion that now the victim’s
execution direction is “T” (i.e., taken), and bit 341 of the private key is “1”. Figure 9 shows
that the victim’s target branch direction vector executed is “1,011,111,100”. It is worth
noting that since each bit’s recovery is independent from others’, the error of one bit would
not affect the recovery of following bits. With the help of post-processing analysis scripts,
we can reliably recover the full 2048-bit RSA private key by checking and analyzing the
execution vector of the attacker’s target branch during the attack.

Besides using PMC, we also try the TSC for measurements. The accuracy of the two
measurement methods is displayed in Figure 10. Compared with the PMC measurement,
there is a degradation of the attacking accuracy using the TSC measurement. Also, the
result illustrates that there is a strong relationship between the detection times and the
attacking accuracy. When the detection times is 5, Bluethunder can achieve the accuracy
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Table 7: Comparison between the two measurements in SGX, including both the accuracy
and the latency.

Detection Times 5 10 15 20 25 30

Rdpmc Error Rate (%) 20.5 8.0 4.8 3.3 1.4 1.3
Rdpmc Latency (×104 cycles) 4.2 7.3 10.4 13.4 16.5 19.5
Rdtscp Error Rate (%) 24.1 17.3 15.9 14.3 14.9 14.1
Rdtscp Latency (×104 cycles) 4.2 7.2 10.3 13.3 16.4 19.2

Table 8: Comparison between Branchscope and Bluethunder (detection times = 6).
– Bluethunder Branchscope

Error Bits 163 47
Error Rate 1.63% 0.47%
Attack Overhead 18,532 956,304

of 79.50% (PMC) and 75.90% (TSC). With the increase of the detection times, the error
rates of the two measurement methods decrease. Their attacking accuracy reaches even
98.7% (PMC) and 85.9% (TSC) when the repeat time is 30. However, this is at the cost
of a longer attacking time. The comparison between the two measurements with different
detection times is shown in Table 7. The result demonstrates that with the increase of the
detection times, the time cost of the two measurement approaches also increases.

6.3 Bluethunder evaluation when hyper-threading is not supported
Although Bluethunder can achieve excellent performance in SMT environments, this attack
is not limited in such scenarios. In other words, Bluethunder can also be conducted in
non-SMT environments. This is because the PHT is not flushed during context switches.
As a result, the effects on the PHT caused by the enclave process can be detected by the
attacker process executing on the same logical core. In order to verify the effectiveness
of such a non-SMT Bluethunder attack, we use it to attack the RSA algorithm and try
to recover the RSA private key. The result shows that although this non-SMT attack
costs much longer time than SMT ones, its accuracy is still pretty high, which can achieve
83.73% in a single run.

6.4 Comparison with Branchscope
We also compare Bluethunder with Branchscope [ERAG+18] by using these two attacks to
recover a same 10,000-bit key separately. Since Branchscope does not rely on interrupting
the enclave, we did not use SGX-Step. Instead, we assume that the enclave can catch up
with the attacker, and we only record the fastest speed Branchscope can achieve. Table 8
gives the comparisons of a Bluethunder attack and a Branchscope attack. Both of them
are PHT-based side channels, while they use different components of the BPU to conduct
attacks. The result shows that it takes 18,532 cycles for training the predictor before each
detection in Bluethunder, which is 1.9% of Branchscope (i.e., 956,304 cycles). In other
words, the speed of Bluethunder is about 52× faster than Branchscope. Also, the accuracy
of Bluethunder is similar to the accuracy of Branchscope.

7 Limitations and Future work
Limitations. Bluethunder has the following limitations: 1 Since Bluethunder relies
on interrupting the enclave, several interrupt auditing mitigation techniques, such as
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T-SGX [SLKP17], may detect our attack. In machines deployed with these protection
methods, the attacker can only force limited number of interrupts in a time period, which
may slow down our attack. 2 Although most of the time, the attacker’s execution
direction sequence follows the “TTTNNN” pattern, it matches other patterns (such as
“TTNN”) sometimes. However, the desired output can be generated by repeating the
experiment.

Future Work. Since the execution of a taken branch updates the branch history record,
the state of the current branch history can be used to uncover the victim’s control flow
accurately. This branch history can be inferred by monitoring the state changes of several
2-level predictor entries. This is because the branch history is one of the elements used for
indexing the 2-level predictor, and different branch history leads to the state update of
different 2-level predictor entries. By measuring the state changes of possible entries and
analyzing which one has been updated, the attacker can eventually deduce the control flow
of the victim program, and thus the secret. Because more predictor entries can be detected
concurrently in this attack, it can achieve a higher speed than current Bluethunder.

8 Countermeasures
Software Mitigations. One software-based approach against Bluethunder is removing
conditional branches in the target enclave program. Choi et al. [CKGN01] propose
a technique called “if-conversion”, which is able to replace conditional branches using
conditional instructions such as CMOV. Since the conditional branches in an enclave program
are removed, our attack cannot be conducted any more. However, this approach is usually
algorithm-specific, and applying it to general applications is challenging.

A more practical countermeasure is auditing [GYCH18], which requires no changes in
processor designs. The main idea of this method is to analyze the abnormal behaviors of
running processes. Since Bluethunder attacks introduce a large number of mispredictions
to the target system, by monitoring the misprediction number in the target systems, these
attacks can be detected. Also, two recent works, T-SGX [SLKP17] and Déjà Vu [CZRZ17],
proposed that detecting the frequent interrupt of the victim enclave can also detect
side-channel attacks. Since Bluethunder relies on frequently interrupting the enclave to
construct PHT entry collisions, these two methods are also valuable to defend against
our attacks. However, for both of these two detecting approaches, selecting the threshold
used for differentiating between benign programs and adverse programs is difficult. This
is because a large number of mispredictions or interrupts can be caused by many benign
programs, just as Bluethunder does.

Hardware Mitigations. In order to prevent Bluethunder, one approach is to randomize
the PHT indexing logic. The root cause of Bluethunder is the 2-level predictor entry
collisions between enclave and non-enclave processes. To make it harder for the attacker
to construct entry collisions, we may change the PHT indexing logic randomly, just like
randomizing the mapping of caches [WL07]. Considering that the attacker may uncover
the randomization indexing logic if we randomize only once, periodically randomization
can be used. This solution can keep the high usage of the PHT, since PHT entries are still
shared between enclave and non-enclave processes. However, extra hardware components
(such as buffers) may be required if we randomize the indexing algorithms multiple times,
in order to record the current indexing relationship between the branches and their PHT
entries.

Another solution is to prevent predicting sensitive branches. A naive way is to
disable the branch prediction. However, this may cause severe penalty to the processor’s
performance. Branchscope [ERAG+18] proposes an optimization method, which enables
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software developers to mark the branches which relate to the sensitive information. When
executing these marked instructions, the CPU will avoid predicting them. This method
can protect the victim process from side channel attacks, as well as cause less performance
overhead than just disabling the BPU. However, this solution cannot protect against covert
channel attacks.

Other possible hardware mitigations also exist. For example, we may double the BPU
logic, one for enclave processes and the other one for non-enclave processes. However, this
mitigation requires a more complex BPU design and increases the costs of manufacturing
processors. Another solution may flush the PHT states whenever the context switches to
or from enclave mode, but this mitigation may lengthen the training time of the BPU,
especially when context switches happen frequently.

9 Related Work
SGX Side Channels. Researchers have shown that Intel SGX is vulnerable to controlled
channel attacks [VBWK+17, XCP15], cache-based attacks [BMD+17, GESM17, HCP17,
SWG+17] and BPU-based attacks [LSG+17, ERAG+18, CCX+19]. 1 According to
Oleksii Oleksenko et al. [OTK+18], page table based attacks can be classified into two
categories: page fault based [XCP15, SCNS16] and page bit based [WCP+17, VBWK+17].
Xu et al. [XCP15] and Shinde et al. [SCNS16] demonstrate page fault side-channel attacks
on SGX, which leak secrets inside enclaves at page size granularity by marking the
enclave pages as non-present. Afterward, researchers find that these controlled channel
attacks against SGX can also be carried out without page faults. By observing the
accessed and dirty bits of the page table, Wang et al. [WCP+17] and Jo Van Bulck
et al. [VBWK+17] conduct page bit attacks and leak enclave’s secrets successfully. 2 cache-
based attacks [WCP+17, GESM17, BMD+17, SWG+17] are also leveraged to conduct
high-resolution SGX attacks. By using “Prime+Probe” approach [OST06], these attacks
are able to learn which memory locations are accessed by the enclave and extract enclave’s
secrets at fine granularity. 3 BPU-based attacks against SGX can be conducted in
two ways. One way is to leverage the speculative prediction results made by the BPU.
For example, SgxPectre [CCX+19] exploits the famous Spectre bug [KHF+19] in an SGX
environment and subverts the confidentiality and integrity of SGX enclaves. Another way to
attack enclaves is to exploit the current state of the BPU. For example, Lee et al. [LSG+17]
conduct an attack called “branch shadowing”, which infers the fine-grained control flow of
an enclave by abusing BTB entry collisions between enclaves and non-enclaves. Another
example is Branchscope [ERAG+18], which leaks the sensitive data in the target program
by abusing the bimodal predictor in the BPU, whose core component is a 2-bit saturating
counter. However, Branchscope has a limitation that it requires nearly 100,000 branches
to initialize the BPU state before each detection during the attack, which slows down the
attacking speed significantly. Branchscope is closely related to our attack. The difference
is that we reverse-engineer and abuse the 2-level directional predictor for attack, which is
a completely different prediction component in the BPU.

Micro-architectural Side Channels. Micro-architectural side-channel attacks have been
investigated for decades since first mentioned by Lampson [Lam73] in 1973. Usually, micro-
architectural side channel exploits shared resources in processors, such as cache [DKPT17,
Per05, GMWM16, IES15, GBK11, KAGPJ16, LYG+15, OST06, YF14, ZJRR12], branch
prediction unit [ERAG+18, KHF+19, MR18, LSG+17, EPAG16, CCX+19], out-of-order
execution [VBMW+18, LSG+18] and floating-point unit [KS17] to perform specific attacks.
Several attacks have been implemented through side channels, such as performing keylog-
ging [GSM15], leaking private keys [VBWK+17, YF14, BB05, AS08, KAGPJ16, LYG+15],
inferring sensitive user data [ZWB+18] and breaking the encryption of TLS [IIES15]. Ge
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et al. [GYCH18] conduct an excellent survey of these micro-architectural timing side-channel
attacks.

10 Conclusion
In this paper, we propose a new PHT-based attack against SGX named Bluethunder, which
leverages the 2-level directional predictor as a side channel. By exploiting hashing collisions
in the predictor, this attack can precisely identify fine-grained (i.e., instruction-level)
control flows inside an enclave. We implement Bluethunder and evaluate this attack on two
case studies: attacking the vfprintf function in the Intel SGX SDK and RSA decryption
algorithm in mbed TLS. Both of the attacks show that even though several defensive
techniques are used, Bluethunder attacks are indeed practical and pose a serious threat on
SGX. In particular, our implementation is able to derive the RSA private key with 96.76%
accuracy in a single run, whose speed outperforms the latest PHT-based side channel
attack (Branchscope) by 52×. We stress that hardware-based countermeasures against
Bluethunder attacks (i.e., flushing the PHT during enclave mode switch) need to be taken,
in order to prevent large-scale exploitation of Bluethunder.
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A Sliding-Window Exponentiation
The sliding-window exponentiation algorithm implemented in mbed TLS is listed below.
This function has two conditional branches (marked with *), whose execution directions
depend on the value of ei.

1 /* Sliding-window exponentiation:
2 X = A^E mod N */
3 int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const
4 mbedtls_mpi *E, const mbedtls_mpi *N, mbedtls_mpi *_RR) {
5 ...
6 state = 0;
7 while (1) {
8 ...
9 // i-th bit of exponent

10 ei = (E->p[nblimbs] >> bufsize) & 1;
11

12 /* skip leading 0s */
13 * if (ei == 0 && state == 0)
14 continue;
15

16 * if (ei == 0 && state == 1)
17 {
18 /* out of window, square X */
19 mbedTLS_MPI_CHK(mpi_montmul(X, X, N, mm, &T));
20 continue;
21 }
22

23 state = 2; nbits++;
24 wbits |= (ei << (wsize-nbits));
25

26 if (nbits == wsize) {
27 for (i = 0; i < wsize; i++)
28 mpi_montmul(X, X, N, mm, &T);
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29

30 mpi_montmul(X, &W[wbits], N, mm, &T);
31 state--; nbits = wbits = 0;
32 }
33 }
34 ...
35 }
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