Practical and Efficient in-Enclave
Verification of Privacy Compliance

Weijie Liu, Wenhao Wang, Hongbo Chen, Xiaofeng Wang, Yaosong Lu,
Kai Chan, Xinyu Wang, Qintao Shen, Yi Chen, Haixu Tang

Data security in Confidential Computing

* Confidential Computing as a Service

= fEs— DED
23andMe w ’ PayPal ‘I_—:—|—| _?:
‘ o—— ooo

Data security in Confidential Computing

* Confidential Computing as a Service

[‘ , Ucclum
- 4 Confidential Computing
CONFIDENTIALCOMPUTING
(C CONSORTIUM inte)

Intel SGX is designed for Confidential Computing

e Data confinement
* Enclave — an isolated and encrypted computing environment

Intel SGX is designed for Confidential Computing

e Data confinement

* Enclave — an isolated and encrypted computing environment
Program

i

: Non-

I enclave
A

1 Software] OS
!
; access

Encrypted

SGX is designed for Confidential Computing

e Data confinement
* Enclave — an isolated and encrypted computing environment

* Remote Attestation
* Verifying a signed report —a measurement hash
* Availability of the measurement — the program should be public

SGX does not protect data from untrusted code

* Programs may have exploitable bugs, or they may write information
out of the enclave through corrupted pointers easily.

* Also, things become problematic when the program itself is private
and cannot be exposed.

Existing program verification approaches

* Formal method
* Traditional Proof-Carrying Code

Code Producer Code Consumer

! Source

VCGen +

VCGen + Safety pohcy

Safety Policy

]
Certifying +> Machine Code __| >:’ ;;e'cL{e' H
Compiler : B '

l W

! |

- |

! |

! |

! |

]

X
M Verification Condition
Verification Condition | ' (Safety Theorem)
(Safety Theorem) -

1
I
1
I
| :
i |Annotations |
1 1
E Prover : Safety Proof
: l
I

--

[Truste
D Untrus

Existing program verification approaches

* Formal method

* Traditional Proof-Carrying Code
* Difficult to scale to real-world software
* Large TCB
* Lack of SGX runtime support

ldea

e Software-based Fault Isolation
* More practical, but not efficient

* Proof-Carrying Code
* Pushing the heavy-lifting part of program generation to the outside of the TCB

ldea

e Software-based Fault Isolation

* Proof-Carrying Code

Code Producer
Source Program

|

Code Generator

I
|
|
[

Code h
(Target binary)

Code Consumer

Bootstrap Enclave

+

-

(LLVM)

|

Security Policies

Proof

Target binary with Proof

(Security annotation,
-.\!_ndireci branch ta rget_]/.-
I

Loader and Verifier

tRTS Library

SGX-enabled Platform \

Trusted —-|-— Unirusied —-|

11

Design

* Model
* Delegated and flexible enclave code verification (DEFLECTION)

Data Owner

12

Design

* Model
* Delegated and flexible enclave code verification (DEFLECTION)
 Service code (target binary) is not trusted.

* SGX hardware, its attestation protocol, and all underlying cryptographic
primitives are trusted.

Data Owner

13

Design

* Workflow
* Automated code instrumentation — by our compiler tool-chain
* Attested bootstrapping — by the loader
* Runtime security policy enforcement — by the verifier and rewriter

: Policy-Compliant Code Generation ; Attested Bootstrap Enclave
- | Source Code e : Dynamic Code Loading - Compliance Verification
olicies on -l -) . . .
int main() { (Memnry Gparaticns) 15 2. Binary Parsing 3. Relocation Assembly w
y Policies Target Binary | :|: |_ELF header ELPheader il ome sewern) | 4 Policy mow (D) et
on CFI J\ with Proof : : Header table Header table |< 1% | movg [‘:f{:-lr‘il:l}, %11 | Checking | ™4 %(11.{%:5::# :
Policies on Side/ 10101010101010 L -1 * I gortion 4 [> Segment 1 ¥ J!:n"e-lpu ;xr|11 1|'a[::|r5m g TV
Covert Channels / 1010010101010 | - f : N - 5.Imms | ret
1001011100..." | :f ! I Rewriting | . :
1. Compiling and Linking I aE 7 7 7 7

14

Automated program instrumentation

 Security policies
* Enclave entry/exit control (PO)
 Memory leak control (P1-P4)
e Control-flow management (P5)
* AEX-based side channel mitigation (P6)

Automated program instrumentation

 Security policies

* Memory leak control
* Preventing explicit out-of-enclave memory stores

nh B W N -

pushq
pushq
leaq
movq

cmpq
ja

7 movq

cmpq
jb

popq
popq
movq

%r b x save execution status

%or a X

[reg+imm], %rax ;load the operand
$0x3FFFFFFFFFFFFFFF, %rbx ;set bounds
%rbx , %rax

exit_label

$0x4FFFFFFFFFFFFFFF, %rbx ;set bounds
Yorbx , %rax

exit_label

Jor a X

%rb x Memory storing
reg, [reg+imi

16

Automated program instrumentation

 Security policies

* Memory leak control
* Preventing explicit out-of-enclave memory stores (P1)
* Preventing implicit RSP spills (P2)
* Preventing unauthorized change to SSA/TLS (P3)
* Preventing runtime code modification (P4)

Automated program instrumentation

 Security policies

* Code generation
* IR level switch
* Target level passes

W Clang LLVM IR LLVM is@l_y\l
‘-..._,_____,_...-r"'"'_'_._-_h""“
t 1
(Switches J—,‘\IR}Q Backend Pass

/7 N
[5'5;4 moni. mrr’ngj ?f'femar}' smrfi-:g] (Shadow S'I'ac‘fﬁ

Instrumentation Instrumentation {Hsa‘i'umem‘arfan

J

4

h

h 4

E’ﬂhmrd—edge bmncﬂ RSP modlﬁ‘mg] (

instrumentation Instrumentation

~

Attested bootstrapping

* Bootstrap enclave creation
e Attestation and key exchange

Attested bootstrapping

* Bootstrap enclave creation
e Attestation and key exchange
* Dynamic code loading

1. Receive with 2. In-enclave
ECALLs Rebase

7 S\

Shadow Stack

Indirect

. k=9 Indirect Branch List Indirect Branch List
Branch List

Loader / Verifier Loader / Verifier

Relocatable Relocatable Heap for
Target Program ¢ - - 4 - Target Program . Relocated
_/'—'\ 1. Program

) e Relocated
Reserved Program

)

RWX
with
DEP

20

Runtime security policy enforcement

* Just-enough disassembling and scanning

* Capstone
e Recursive descent disassembling
* Diet mode

Runtime security policy enforcement

* Just-enough disassembling

* Immediate operand rewriting

e Verification

pushq
pushq
leaq
mov(

cmpq

ja
mov(q
c¢mpq
jb

popq
popq

2 movq

Jor b x :§ave execution status

J%rax

[reg+imm], %rax ;load the operand

$0x3FFFFFFFFFFFFFFF , %rbx
Jorbx , %rax

exit_label
$0x4FFFFFFFFFFFFFFF , %rbx
Jorbx , %rax

exit_label

Jor a X

Jor b X

reg, [reg+imm]

:set bounds

-set bounds

22

Security analysis

* TCB
* Loader/Verifier — 1.3 kLoCs
e Capstone base —9.1 kLoCs
* Total binary size — 3.5 MB

Security analysis

* TCB
* Loader/Verifier — 1.3 kLoCs
e Capstone base —9.1 kLoCs
* Total binary size — 3.5 MB

* Possible leakage
* Bridge functions (PO)
 Memory write (P1-P5)
 Side/Covert channel (P6)
* Hyperrace — our previous work on IEEE S&P’18

Performance

* Real-world applications

 Benchmarks
* nBench —0.3%~25% (P1-P5)
 HTTPS server — 14% on average (P1-P6)

=y
Ja
-
[}

@ @

£ P1 P1+P2 . P1~P5 . P1~-P6 g P1 P1+P2 B P1-P5 - P1-~-PG
= =

213 2

= ‘w12

w w

2 g

812 S

o (a

- = 11

g1 g

™ =

£

B 1.0 § 10

= 50B 100B 200B 500B = 10K 100K 200K 500K

Normalized Processing
o = o= RN
[$] =] en [en

e
&
(==

P1+P2 W P1~P5 [P1-P6

10K 50K 100K

25

Performance

* Real-world applications
* Benchmarks
e Comparison with Graphene-SGX/Occlum

1.0
Q Graphene-SGX Occlum (1 thread, without SFI)
& 09 B Ours (baseline) @ Ours (with PO-P5)
9
7))
& 0.8
-
©
N o7
'©
£
o 0.6
pa
0.5

10M 30M 50M 70M 90M

26

Benefit over state-of-the-arts

* Rely less on CPU hardware features

* Smaller TCB
* Side channel mitigation

summary

» Deflection is practical and efficient.
* Deflection is relatively flexible.

Thanks

* https://github.com/StanPlatinum/Deflection

29

https://github.com/StanPlatinum/Deflection

