
Practical and Efficient in-Enclave 
Verification of Privacy Compliance

Weijie Liu, Wenhao Wang, Hongbo Chen, Xiaofeng Wang, Yaosong Lu, 
Kai Chan, Xinyu Wang, Qintao Shen, Yi Chen, Haixu Tang

1



Data security in Confidential Computing

• Confidential Computing as a Service

2



Data security in Confidential Computing

• Confidential Computing as a Service

3



Intel SGX is designed for Confidential Computing

• Data confinement
• Enclave – an isolated and encrypted computing environment

4



Intel SGX is designed for Confidential Computing

• Data confinement
• Enclave – an isolated and encrypted computing environment

5



SGX is designed for Confidential Computing

• Data confinement
• Enclave – an isolated and encrypted computing environment

• Remote Attestation
• Verifying a signed report – a measurement hash

• Availability of the measurement – the program should be public

6



SGX does not protect data from untrusted code

• Programs may have exploitable bugs, or they may write information 
out of the enclave through corrupted pointers easily.

• Also, things become problematic when the program itself is private 
and cannot be exposed.

7



Existing program verification approaches

• Formal method
• Traditional Proof-Carrying Code

8



Existing program verification approaches

• Formal method
• Traditional Proof-Carrying Code

• Difficult to scale to real-world software

• Large TCB

• Lack of SGX runtime support

9



Idea

• Software-based Fault Isolation
• More practical, but not efficient

• Proof-Carrying Code
• Pushing the heavy-lifting part of program generation to the outside of the TCB

10



Idea

• Software-based Fault Isolation

• Proof-Carrying Code

11



Design

• Model
• Delegated and flexible enclave code verification (DEFLECTION)

12



Design

• Model
• Delegated and flexible enclave code verification (DEFLECTION)

• Service code (target binary) is not trusted.

• SGX hardware, its attestation protocol, and all underlying cryptographic 
primitives are trusted.

13



Design

• Workflow
• Automated code instrumentation – by our compiler tool-chain

• Attested bootstrapping – by the loader

• Runtime security policy enforcement – by the verifier and rewriter

14



Automated program instrumentation

• Security policies
• Enclave entry/exit control (P0)

• Memory leak control (P1-P4)

• Control-flow management (P5)

• AEX-based side channel mitigation (P6)

15



Automated program instrumentation

• Security policies
• Memory leak control

• Preventing explicit out-of-enclave memory stores

Memory storing

16



Automated program instrumentation

• Security policies
• Memory leak control

• Preventing explicit out-of-enclave memory stores (P1)

• Preventing implicit RSP spills (P2)

• Preventing unauthorized change to SSA/TLS (P3)

• Preventing runtime code modification (P4)

17



Automated program instrumentation

• Security policies

• Code generation
• IR level switch

• Target level passes

18



Attested bootstrapping

• Bootstrap enclave creation

• Attestation and key exchange

19



Attested bootstrapping

• Bootstrap enclave creation

• Attestation and key exchange

• Dynamic code loading

20



Runtime security policy enforcement

• Just-enough disassembling and scanning
• Capstone 

• Recursive descent disassembling

• Diet mode

21



Runtime security policy enforcement

• Just-enough disassembling

• Immediate operand rewriting

• Verification

22



Security analysis

• TCB
• Loader/Verifier – 1.3 kLoCs

• Capstone base – 9.1 kLoCs

• Total binary size – 3.5 MB

23



Security analysis

• TCB
• Loader/Verifier – 1.3 kLoCs

• Capstone base – 9.1 kLoCs

• Total binary size – 3.5 MB

• Possible leakage
• Bridge functions (P0)

• Memory write (P1-P5)

• Side/Covert channel (P6)
• Hyperrace – our previous work on IEEE S&P’18 

24



Performance

• Real-world applications

• Benchmarks
• nBench – 0.3%~25% (P1-P5)

• HTTPS server – 14% on average (P1-P6)

25



Performance

• Real-world applications

• Benchmarks

• Comparison with Graphene-SGX/Occlum

26



Benefit over state-of-the-arts

• Rely less on CPU hardware features

• Smaller TCB

• Side channel mitigation

27



Summary

• Deflection is practical and efficient.

• Deflection is relatively flexible.

28



Thanks

• https://github.com/StanPlatinum/Deflection

29

https://github.com/StanPlatinum/Deflection

