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Intel SGX is designed for Confidential Computing

e Data confinement
* Enclave — an isolated and encrypted computing environment
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SGX is designed for Confidential Computing

e Data confinement
* Enclave — an isolated and encrypted computing environment

* Remote Attestation
* Verifying a signed report —a measurement hash
* Availability of the measurement — the program should be public



SGX does not protect data from untrusted code

* Programs may have exploitable bugs, or they may write information
out of the enclave through corrupted pointers easily.

* Also, things become problematic when the program itself is private
and cannot be exposed.



Existing program verification approaches

* Formal method
* Traditional Proof-Carrying Code
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Existing program verification approaches

* Formal method

* Traditional Proof-Carrying Code
* Difficult to scale to real-world software
* Large TCB
* Lack of SGX runtime support



ldea

e Software-based Fault Isolation
* More practical, but not efficient

* Proof-Carrying Code
* Pushing the heavy-lifting part of program generation to the outside of the TCB



ldea

e Software-based Fault Isolation

* Proof-Carrying Code
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Design

* Model
* Delegated and flexible enclave code verification (DEFLECTION)

Data Owner
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Design

* Model
* Delegated and flexible enclave code verification (DEFLECTION)
 Service code (target binary) is not trusted.

* SGX hardware, its attestation protocol, and all underlying cryptographic
primitives are trusted.

Data Owner
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Design

* Workflow
* Automated code instrumentation — by our compiler tool-chain
* Attested bootstrapping — by the loader
* Runtime security policy enforcement — by the verifier and rewriter
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Automated program instrumentation

 Security policies
* Enclave entry/exit control (PO)
 Memory leak control (P1-P4)
e Control-flow management (P5)
* AEX-based side channel mitigation (P6)



Automated program instrumentation

 Security policies

* Memory leak control
* Preventing explicit out-of-enclave memory stores
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pushq
pushq
leaq
movq

cmpq
ja

7 movq

cmpq
jb

popq
popq
movq

%r b x save execution status

%or a X

[reg+imm], %rax ;load the operand
$0x3FFFFFFFFFFFFFFF, %rbx ;set bounds
%rbx , %rax

exit_label

$0x4FFFFFFFFFFFFFFF, %rbx ;set bounds
Yorbx , %rax

exit_label

Jor a X

%rb x Memory storing
reg, [reg+imi
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Automated program instrumentation

 Security policies

* Memory leak control
* Preventing explicit out-of-enclave memory stores (P1)
* Preventing implicit RSP spills (P2)
* Preventing unauthorized change to SSA/TLS (P3)
* Preventing runtime code modification (P4)



Automated program instrumentation

 Security policies

* Code generation
* IR level switch
* Target level passes
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Attested bootstrapping

* Bootstrap enclave creation
e Attestation and key exchange



Attested bootstrapping

* Bootstrap enclave creation
e Attestation and key exchange
* Dynamic code loading
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Runtime security policy enforcement

* Just-enough disassembling and scanning

* Capstone
e Recursive descent disassembling
* Diet mode



Runtime security policy enforcement

* Just-enough disassembling

* Immediate operand rewriting

e Verification

pushq
pushq
leaq
mov(

cmpq

ja
mov(q
c¢mpq
jb

popq
popq

2 movq

Jor b x :§ave execution status

J%rax

[reg+imm], %rax ;load the operand

$0x3FFFFFFFFFFFFFFF , %rbx
Jorbx , %rax

exit_label
$0x4FFFFFFFFFFFFFFF , %rbx
Jorbx , %rax

exit_label

Jor a X

Jor b X

reg, [reg+imm]

:set bounds

-set bounds
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Security analysis

* TCB
* Loader/Verifier — 1.3 kLoCs
e Capstone base —9.1 kLoCs
* Total binary size — 3.5 MB



Security analysis

* TCB
* Loader/Verifier — 1.3 kLoCs
e Capstone base —9.1 kLoCs
* Total binary size — 3.5 MB

* Possible leakage
* Bridge functions (PO)
 Memory write (P1-P5)
 Side/Covert channel (P6)
* Hyperrace — our previous work on IEEE S&P’18



Performance

* Real-world applications

 Benchmarks
* nBench —0.3%~25% (P1-P5)
 HTTPS server — 14% on average (P1-P6)
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Performance

* Real-world applications
* Benchmarks
e Comparison with Graphene-SGX/Occlum
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Benefit over state-of-the-arts

* Rely less on CPU hardware features

* Smaller TCB
* Side channel mitigation



summary

» Deflection is practical and efficient.
* Deflection is relatively flexible.



Thanks

* https://github.com/StanPlatinum/Deflection
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