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Abstract—With its huge real-world demands, large-scale con-
fidential computing still cannot be supported by today’s Trusted
Execution Environment (TEE), due to the lack of scalable and
effective protection of high-throughput accelerators like GPUs,
FPGAs, and TPUs etc. Although attempts have been made
recently to extend the CPU-like enclave to GPUs, these solutions
require change to the CPU or GPU chips, may introduce
new security risks due to the side-channel leaks in CPU-GPU
communication and are still under the resource constraint of
today’s CPU TEE.

To address these problems, we present the first Heterogeneous
TEE design that can truly support large-scale compute or data
intensive (CDI) computing, without any chip-level change. Our
approach, called HETEE, is a device for centralized management
of all computing units (e.g., GPUs and other accelerators) of a
server rack. It is uniquely designed to work with today’s data cen-
tres and clouds, leveraging modern resource pooling technologies
to dynamically compartmentalize computing tasks, and enforce
strong isolation and reduce TCB through hardware support.
More specifically, HETEE utilizes the PCIe ExpressFabric to
allocate its accelerators to the server node on the same rack
for a non-sensitive CDI task, and move them back into a secure
enclave in response to the demand for confidential computing.
Our design runs a thin TCB stack for security management on a
security controller (SC), while leaving a large set of software (e.g.,
AI runtime, GPU driver, etc.) to the integrated microservers that
operate enclaves. An enclaves is physically isolated from others
through hardware and verified by the SC at its inception. Its
microserver and computing units are restored to a secure state
upon termination.

We implemented HETEE on a real hardware system, and
evaluated it with popular neural network inference and training
tasks. Our evaluations show that HETEE can easily support
the CDI tasks on the real-world scale and incurred a maximal
throughput overhead of 2.17% for inference and 0.95% for
training on ResNet152.

I. INTRODUCTION

The explosive growth of the data being collected and ana-

lyzed has fueled the rapid advance in data-driven technologies

and applications, which have also brought data privacy to the

spotlight as never before. A large spectrum of data-centric in-

novations today, ranging from personalized healthcare, mobile

finance to social networking, are under persistent threats of

data breaches, such as Facebook data exposure [1], [2], and

the growing pressure for compliance with emerging privacy
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laws and regulations, like GDPR (general data protection

regulation) and the CCPA (California Consumer Privacy Act).

As a result, there is an urgent demand for privacy-preserving

techniques capable of supporting computing and data-intensive

(CDI) computing, such as training deep neural networks

(DNNs) over an enormous amount of data.

TEE-based secure computing. Answering to this urgent

call are confidential computing techniques, which have been

studied for decades. Traditional software-only approaches such

as homomorphic encryption and secure multi-party computing

are considered to be less effective in protecting complicated

computing (such as DNN analysis) over big data, due to

their significant computation or communication overheads.

Emerging as a more practical solution is the new generation of

hardware supports for Trusted Execution Environments (TEEs)

such as Intel Software Guard Extensions (SGX) [3], AMD

Secure Encrypted Virtualization (SEV) [4] and ARM Trust-

Zone [5]. These TEEs are characterized by their separation

of a secure world, called enclave in SGX, from the insecure

one, so protected data can be processed by trusted code in

an enclave, even in the presence of a compromised OS and

corrupted system administrators. None of them, however, can

truly support CDI computing tasks, due to their exclusion

of high-throughput accelerators such as graph-processing unit

(GPU), tensor-processing unit (TPU), and FPGA etc. More

fundamentally, today’s TEEs are not designed to protect big-

data analytics, since they fail to support the heterogeneous

computing model that becomes the mainstream architecture

for CDI computing [6]–[14]. Under the heterogeneous archi-

tecture, a CDI computing task is jointly processed by different

types of computing units: e.g., a machine learning task today

is typically performed by a CPU, which acts as a control unit,

and a set of GPUs or TPUs, which serve as computing units.

Such a joint computing model also needs to be under TEE’s

protection, which has not been considered in current designs.

Recent years have seen attempts to support the heteroge-

neous TEE. Examples include Graviton [15] and HIX [16].

However, all these approaches require changes to CPU and

(or) GPU chips, which prevents the use of existing hardware,

and also incurs a long and expensive development cycle to

chip manufacturers and therefore may not happen in the near
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future. Another problem is that their reliance on the host

CPU TEE limits their utility. As a prominent example, SGX

today has only been deployed to Xeon E3 processors, while

dominant high-performance Intel CPU chips like Xeon E5

extensively used in data centers still have not included SGX

instructions yet. Also, running CDI tasks and their computing

supports (e.g., AI framework, GPU runtime and driver, etc.)

inside a CPU TEE today significantly increases the size of

Trusted Computing Base (TCB) and may not even be possible

due to the resource constraints of the TEE (e.g., < 100MB

protected memory for SGX [3]). Finally the design based upon

the enclaves of individual cores requires these enclaves to

work closely with each other. This has security implications

and opens a new avenue for a side-channel analysis on the

communication between different enclaves.

Our new design. We believe that a TEE designed for

CDI tasks should offer a strong support for heterogeneous

computing, enabling collaborative computing units to be

protected under a single enclave and conveniently assigned

across secure/insecure worlds and different enclaves. Further

this computation-oriented TEE should only include a small

TCB (e.g., a single security controller with necessary code

customized for supporting CDI task isolation), to reduce its

complexity and also minimize the side-channel attack surface

exposed by resource sharing with the untrusted OS. For ease

of deployment, using existing computing units without chip-

level changes is highly desirable. In this paper, we present the

first design that fits all these descriptions. Our approach, called

HETEE (Heterogeneous TEE), is uniquely constructed to work

with today’s servers, with the focus on protecting Platform as
a Service (PaaS) against information leaks.

Unlike the existing TEE, which works on a single host,

the HETEE architecture is designed to enable dynamic allo-
cation of computing resources for secure and non-sensitive
computing tasks across multiple servers, based upon the state-

of-the-art data-center technologies such as resource pooling

and PCIe switching. More specifically, running on a server

rack, HETEE operates inside a tamper-resistant chassis (called

HETEE box) to control a pool of commercial, off-the-shelf
(COTS) accelerators, including GPUs, FPGAs, etc. The box

is connected to other hosts on the same rack through PCIe

Switch Fabric. On receiving a request from a host, the HETEE

box dynamically configures the PCIe Switch to connect COTS

computing units to the host, when the task is non-sensitive. For

a task involving sensitive data, HETEE configures the switch

to allocate computing units for a secure enclave isolated from

other units, performs a remote attestation with the data owner

(through one of the hosts) and then decrypts the data from the

owner and runs approved code on the data inside the enclave.

After the task is done, all units are sanitized and restored to

their original, trusted states for processing the next task. In this

way, we can leverage existing hardware to provide on-demand

computing supports for both sensitive and public tasks.

Further underlying our design is the idea to simplify TCB
through cost-effective hardware design. The HETEE architec-

ture includes a two-level isolation mechanism based upon a Se-

curity Controller (SC) and a set of low-cost microservers that

act as security proxy nodes. While a proxy node could

run a complete software stack (e.g., CUDA [17], TensorFlow

[18]), it is verified and protected by the SC, which involves

only necessary functionalities like (de)encryption, remote at-

testation, PCIe fabric configuration, etc., before touching sen-

sitive data. Isolation between the HETEE and the outside

world and among different enclaves is achieved physically
with the PCIe switch and the proxies, each controlling a

separate enclave. Restoration to secure states for the proxy
node happens through secure reboot of the server. This design

avoids software-based enclave control, isolation, etc., thereby

reducing the TCB size.

We performed a security analysis of HETEE and further im-

plemented it on a PCIe ExpressFabric backplane, CPU+FPGA

(for the SC), Intel Xeon E3 based microservers (for the

proxy nodes), and 4 Nvidia TITAN X GPUs, with the

TCB including only necessary security and management code,

excluding the heavy software stack for controlling accelerators

or executing the AI runtime. Running the implementation

on DNN training and inference tasks of the real-world scale

(152-layer ResNet network, with 60 MB parameters and 200

MB model size on the ∼138GiB ImageNet data set), we

observed an average 1.96% throughput overhead and 34.51%

latency overhead for inference, 0.60% throughput overhead

and 14.24% latency overhead for training.

Contributions. The contributions of this paper are summa-

rized as follows:

• New TEE design for scalable confidential computing. We

present the first design for data-center level TEE, supporting

super large-scale confidential computing. Our design lever-

ages the state-of-the-art computing unit pool technologies

to dynamically allocate computing resources for both secure

and non-sensitive computing tasks across all servers on a

rack. It further reduces security risks using a centralized yet

cost-effective HETEE box (with the expense of confidential

computing hardware below 5% of the cost of computing units),

and hardware-based TCB simplification.

• Implementation and evaluation. We implemented our design

and evaluated it on large-scale DNN training and inference

tasks. Our study shows that our approach largely preserves

the performance of heterogeneous computing in the trusted

execution environment, which has never been achieved before.

Roadmap. The rest of the paper is organized as follows: Sec-

tion II presents the background and threat model; Section III

provides the HETEE design; Section IV and V describe the

HETEE prototype system and typical confidential AI comput-

ing services; Section VI reports the performance evaluations;

Section VII elaborates our security analysis and Section VIII

is the discussion; Section IX surveys the related works and

Section X concludes the paper.
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II. BACKGROUND

A. Heterogeneous Data-Center Computing Architecture

Heterogeneous computing support. Heterogeneous comput-

ing architectures are commonly used in data centers, since a

large-scale computing task such as DNN training and inference

often needs to be processed jointly by different computing

units (GPUs, other accelerators, etc.). Since configuring hard-

ware systems, particular expensive computing units like GPUs,

based on peak workload usually leads to over-provision,

which increases cost, on-demand resource allocation and cost-

effective architecture are becoming mainstream [74]–[79].

Serving this purpose is a resource-pooling technique (aka.,

resource disaggregation) powered by the PCIe switch network,

which is known to be a mature solution for building high-

density data center servers [28] [29]. For example, Facebook’s

AI hardware acceleration systems (Zion and Kings Canyon

[6]), Nvidia’s DGX-2 [19] [20] and HGX-1/2 series [21]–[24]

all utilize PCIe ExpressFabric to construct their heterogeneous

architectures. The PCIe ExpressFabric chips enable a group

of CPUs to flexibly share multiple GPUs and other high-

performance IO devices, thereby reducing cost and increasing

resource utility.

PCIe ExpressFabric. Besides the capability of traditional

PCIe switch chip, PCIe ExpressFabric chip is also featured

with two unique properties important to our design:

• Software-defined fabric. The switch is built on a hybrid

hardware/software platform that offers high configurability and

flexibility with regards to the number of hosts, end-points,

and PCIe slots. Its critical pathways have direct hardware

support, enabling the fabric to offer non-blocking, line speed

performance with features such as I/O sharing. The chip has

a dedicated port for management, through which an external

management CPU (mCPU) can initialize the switch, configure

its routing tables, handle errors, Hot-Plug events, and others.

In this way, all the hosts connected by the switch only see

what the mCPU allows them to see.

• Flexible topology. The switch eliminates the topology re-

strictions of PCIe. Usually, PCI Express networks must be

arranged in a hierarchical topology, with a single path from

one point to another. ExpressFabric allows other topologies

such as mesh.

B. Trusted Execution Environment

A trusted execution environment (TEE) guarantees that

the code and data loaded into an isolated area (called an

enclave) are protected to ensure their confidentiality, integrity

and authenticity. TEE is designed to thwart not only the OS-

level adversary but also the malicious party who has physical

access to the platform. To this end, it offers hardware-enforced

security features including isolated execution, integrity and

confidentiality protection of the enclave, along with the ability

to authenticate the code running inside a trusted platform

through attestation:

• Isolation. Data within the enclave cannot be read or modified

by untrusted parties.

• Integrity. Runtime states should not be tampered with.

• Confidentiality. Code, data and runtime states should not be

observable to unauthorized applications.

• Authentication. The code under execution has been correctly

instantiated on a trusted platform.

Existing TEEs, including Trustzone and SGX, and the

solutions that extend CPU TEEs to protect heterogeneous

units [15] [16] are focused on protecting the operations of

individual computing units, not their high-performance inter-

actions. Such designs expose a large surface to side channel

attacks during heterogeneous computing and also increase

overhead when computing results move from one enclave to

the other. As a result, they are less suitable for supporting

super large-scale confidential computing.

C. Threat Model

We consider a strong adversary who controls the entire

software stack on host systems and has physical access to

the HETEE platform, as elaborated below:

(Privileged) software adversary. HETEE defends against

the adversary with full control of the software stack on the

host systems, including unprivileged software running on the

host and the host OS. Such an adversary can also mount a

side channel attack e.g. by analyzing network traffic. Covert

channels are currently out of the scope of the paper.

Hardware adversary. An adversary with physical access to

the server can mount snooping attacks on the host memory

bus. We assume that the adversary cannot physically tamper

with the HETEE box, as the box used in a data center can be

a secure self-destructing chassis that is armed with a micro-

controller (MCU) system and a set of sensors (e.g., pressure,

vibration and temperature etc) for access control management

and intrusion detection/response [30]–[34], [104], [105]. As

such, the hardware adversary cannot mount a snooping attacks

on the PCIe fabric within the HETEE box. We exclude

electromagnetic and power analysis and leave them to the

future work. Like TrustZone, our approach is not completely

immune to a cold boot attack, but does provide a certain level

of protection: the cold boot attack [98]–[100] cannot succeed

when the time taken to open the sealed box illegally is longer

than that for retaining memory content after the power is

removed. Also if necessary, the HETEE chassis could include

more expensive self-destructive protection [101], [102].

Others. We use standard cryptographic techniques, and attacks

against cryptographic algorithms are out of our scope. The

ciphertext communicated between HETEE and remote users

needs to be forwarded by non-secure hosts, so denial of service

attacks are also not considered in this paper. We also trust the

FPGA synthesis tool and the mCPU firmware. We assume

that the firmware of GPU does not include malicious code

and its integrity is protected, and our design has to trust the

hardware vendor for the correctness of the firmware updates

(see Section VII).
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III. HETEE ARCHITECTURE

A. Design Overview
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Fig. 1. HETEE Overview.

Idea and architecture. HETEE is designed to provide an

efficient, practical and flexible trusted execution environment

for rack-scale heterogeneous computing in clouds and data

centers, with the focus on protecting Platform as a Service
(PaaS) (Machine Learning Platform as a service (MLPaaS) [6],

[7], [109] in particular) against information leaks (to other

platform users and the platform provider). Through HETEE,

the cloud service provider can create an enclave for a user on

a proxy node, running OS and other public platform software

(e.g, Tensorflow), while the enclave user uploads her code

and data into the enclave to run her task on the platform (e.g.,

training a ML model). The result will only go back to the user.

This service model has been used by today’s TEE service

providers such as Microsoft Confidential Computing [109].

Compared with prior work [15] [16], our approach is unique in

that it leverages existing data center technologies and resources

to achieve scalable protection, requires no chip-level change,

and strives to minimize the side-channel attack surface.

Fig. 1 illustrates the architecture of a typical data center

running HETEE. Our approach uses PCIe ExpressFabric as

a high-speed, low-latency resource sharing network inside

the rack, connecting local computing server nodes to a pool

of heterogeneous computing units (GPUs, FPGA-based ac-

celerators, etc.). In particular, the HETEE box provides the

rack-scale resource sharing fabric built on PCIe Expressfabric

chips. While other commercial computing nodes may only

integrate traditional PCIe transparent switch chip rather than

the PCIe Expressfabric chips for I/O extensions, they can

connect to the resource sharing fabric via PCIe extension

adaptor and PCIe cable. Inside each rack, the HETEE box

manages heterogeneous units, dynamically allocating them to

computing tasks and isolating them from each other through

several modules, including Security Controller (SC), proxy
nodes, and accelerator resources with PCIe interfaces.

User support. HETEE provides a set of APIs and a library

for remote users to utilize the TEE service. Through these

toolkits, the user firstly establishes a trust relation with an

HETEE enclave (through its SC) and negotiates with it a

shared secret through a remote attestation. The subsequent

messages between the user and the box are then encrypted

and integrity-protected.

For this purpose, the APIs we provide include the typical

functions send_message and receive_message that

deliver the following three messages based on a classic re-

quest/acknowledge protocol:

• Configuration messages: The remote user sends the config-

uration message to the SC to create a new HETEE enclave,

as well as the specified type and number of accelerators. The

SC will assign a unique ID to each enclave.

• Code messages: These messages are used to transfer pro-

grams to be executed to the HETEE enclave, which could be

AI models in the ONNX format [35], or CUDA code etc.

• Data messages: The messages used to deliver sensitive data.

Design challenges. Behind the support for the remote user

are a set of techniques developed to securely and dynamically

share computing resources for both secure and non-secure

computing tasks. These techniques are meant to address the

following technical challenges: (a) how to share computing

resources while providing strong isolation for HETEE enclaves

(Sec. III-B); (b) how to minimize the TCB (Sec. III-C).

For (a), HETEE utilizes the PCIe ExpressFabric to dynam-

ically and physically isolate an enclave from other enclaves

and from the untrusted OS. For (b), we adopt a unique two-

level isolation strategy in which the SC is the only trusted

node and runs a small set of firmware with integrated security

and management code, while the proxy node operates the

heavy software stack for controlling accelerators and executing

the AI runtime. This approach, together with our use of

hardware to replace software control, helps simplify the TCB.

In the rest of the section, we present the detailed designs

of these techniques, together with the mechanism to establish

trust between the HETEE and the user.

B. Elastic Resources Allocation and Isolation

Elastic resources allocation. The PCIe ExpressFabric Switch

chip has a dedicated management port for configuration, which

is used by the SC for computing unit allocation and computing

isolation. Through the chip’s driver, the SC can implement a

PCIe network configuration using its APIs and/or Command

Line Instructions (CLIs). This allows definition of different

connection topologies on-demand, so as to dynamically assign

accelerators to the hosts on the same rack and separate

different computing tasks from each other. More specifically,

such elasticity in resource allocation and isolation offers the

following supports:

• Elastic allocation of pooled secure accelerators. Pooled

accelerators in the secure state can be dynamically allocated

as security resources: that is, the SC can assign multiple

accelerators to a dedicated proxy node that runs an enclave

by configuring the PCIe fabric chip. As shown in Fig. 2 (a),

to handle a secure computing task, a server node forwards

encrypted requests and data from the user to the SC first, which

then decrypts the messages and delivers the content to the

proxy node that controls secure accelerators. Through the
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Fig. 2. Elastic allocation of resources.

dynamic network configuration, we can allocate accelerators

in the resource pool according to computing requirements,

achieving better resource utilization and efficiency. The remote

users can request accelerators for their tasks. An AI framework

can also automatically assess its workload and ask for an

appropriate amount of the accelerator resource.

• Secure mode switch across secure/insecure worlds for ac-
celerators. HETEE is also designed to support the dynamic

switch of the accelerator between secure and insecure worlds,

to share the expensive computing unit across different servers

when they work on non-sensitive computing tasks. Under the

HETEE architecture, computing units for the servers on the

same rack are all managed by the HETEE box. They are

dynamically allocated to the nodes outside the box through re-

configuring the PCIe switch network, so the nodes can directly

manage and use the accelerator shown in Fig. 2 (b). When this

happens, however, the accelerator moves from a secure state

to an insecure one. So when the unit comes back to the pool

for a sensitive task, it needs to be restored to a secure state.

To support the mode switch of accelerators, we have

designed a priority-based preemptive accelerator scheduling

mechanism. A secure switching service needs to run on the

SC. In the meantime, local nodes (i.e., the servers on the same

rack) can ask the controller to release some of the accelera-

tor resources from the secure world through a configuration

message or an out-of-band request. The switching service can

also send high-priority requests to local nodes, halting the

tasks performed by the accelerator in the insecure world and

bringing them back to the secure world.

Efficient secure cleanup. When an enclave is destroyed, both

the proxy node and related computing units need to be

cleaned up to remove data and restored to the “secure” state

before the establishment of a new enclave. For this purpose,

the SC initiates a cold, secure reboot on the proxy node,

which clears the context including all the data inside mem-

ory and architectural registers. Meanwhile, all accelerators

assigned to the proxy node are also powered off and reset

to get back to their original, secure states, assuming that their

firmware has not been compromised. Our experiments show

that such cold reboots can effectively remove the memory and

accessible registers’ content on the state-of-the-art GPUs like

NVIDIA TITAN X and NVIDIA Tesla M40.

The secure reboot process ensures that the proxy node
can only load the OS and accelerator software from signed

images on the SC. This has been done by modifying the

microserver’s PCB board. Specifically, we removed the Boot

ROM chip on the proxy node board and connected the SPI

interface circuit line for boot-loading to the dedicated IO pin of

the FPGA chip on the SC board. As a result, the function of the

Boot ROM chip is replaced by the module on the FPGA chip,

which verifies and loads the OS and other code to the proxy
node. Also, taken over by the SC board is the Intelligent

Platform Management Interface (IPMI) physical interface on

the microserver that is used to remotely manage and control

firmware and system updates.

A problem here is that secure rebooting takes a relatively

long time (tens of seconds) and might affect the HETEE’s

response time and throughput. In practice, however, the issue

is less of a concern, due to the HETEE’s use of a low-cost

high-density microserver cluster, with 2 proxy nodes being

integrated on each adapter card (two cards in our prototype,

see Figure 5(d)). Once rebooted, a node with clean context is

registered to the idle queue. When a new task arrives, the SC
takes the first node in the queue to create an enclave for the

task, together with required accelerators. This approach helps

reduce the average waiting time when the task arrival rate is

relatively low. Since a HETEE box typically carries no more

than 32 GPUs to serve no more than 20 servers on the same

rack, 4-8 microservers, each managing a single enclave, should

be adequate, as implied by the observation in the prior re-

search [37]–[41]: the workloads of a data center are generally

characterized by a diurnal pattern (leaving the accelerators and

servers under-utilized for most of the time except peak hours).

The system’s scalability can be improved using the techniques

like virtualizing TrustZone [42]. However, this software based

isolation increases the complexity of security control, which

might lead to a thicker TCB. How to further improve resources

utilization is left to our future research.

C. Hierarchical Isolation and TCB Simplification

Running a complicated computing task inside HETEE often

needs the support from a complicated software stack. For

example, to perform DNN training or inference, we have to

load AI runtime (TensorFlow [18], Caffe [43] [44] or PyTorch

[45] [46]), the GPU runtime and driver (CUDA) to an enclave.

To address the security risk, we come up with a two-level

isolation design that simplifies the TCB software stack. Only

security and management modules are deployed to the SC,
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AES-GCM: symmetric de/encryption engine; )

which form a thin TCB for the HETEE (our implementation

includes isolation and security management modules on open-

source coreboot [87] firmware). Other software components,

including the GPU driver, runtime, and the AI framework

like TensorFlow, run on the proxy node. As mentioned

earlier, the proxy node is outside the TCB, physically and

logically separated from the SC but controlled by the SC.

When computing a task, each proxy node manages an

enclave and all its computing units but has been isolated from

the outside world by the SC. The integrity of its initial software

stack is verified by the SC and proven to an enclave user (the

data owner) through attestation and the computing results are

only sent back to the user. The physical isolation of the enclave

reduces resource sharing with other enclaves and the untrusted

host, minimizing the side-channel attack surface. Once the

computation is done, the node is sanitized and restored to the

trust state through secure rebooting (Sec. III-B Efficient secure

cleanup), together with all computing units assigned to the

enclave. Below we elaborate the design and implementation

of these components in the HETEE.

Security controller. As a separate system, the security con-

troller runs on a board connected to the standard PCIe fabric,

acting as a gatekeeper for the secure world inside HETEE.

The SC can be implemented in a variety of ways, using

CPU, CPU+FPGA, or a custom ASIC chip. Since CPU is

not as efficient as FPGA when performing encryption and

authentication computation, and the cost of developing the

ASIC chip is high, we utilized CPU+FPGA to built a prototype

(Fig. 3). The main functionalities of the SC are as follows:

• Secure boot: Secure boot is performed by the measure

module on FPGA and the firmware code of mCPU, which

is responsible for the security of the SC itself, as well as

restoration of the proxy node’s trusted state.

• Resource assignment: This module is a program integrated

into the mCPU firmware. It is designed to dynamically con-

figure the PCIe fabric according to security or non-security

requirements, for the purpose of assigning accelerators to

computing nodes, isolating resources for enclave management

and efficient security state switching for pooled accelerators.

• Remote Attestation: The attestation module is implemented

inside the FPGA chip to support cryptographic operations

(key establishment, authentication, etc.) for establishing a trust

relation between the remote user and the HETEE box. The

details are presented in Sec. III-D.

• Message (De)Encryption/Parsing/Scheduling and hardware-
assisted isolation and control: This module is implemented

inside the FPGA chip for recording, (de)encryption and

scheduling of messages and controlling the access to them

from different enclaves. It is designed to isolate enclaves,

particularly the proxy nodes operating them, from the

outside world (the host nodes, remote users, etc.). This is

achieved through hardware-assisted separation, such as the

use of private DDR4 controllers with hardware-wired isolated

access paths of logic implementation inside the FPGA.

The hardware-based message isolation and control is shown

in Fig. 3 (b). Again, the mechanism, together with the resource

assignment module, is designed to physically separate the

enclaves inside the HETEE box and the outside world, so

the SC can have full mediation on the interactions between

the secure and insecure worlds. In the meantime, the design

is meant to minimize the attack surface on the SC, to protect

its (already thin) TCB from potential exploits. Specifically,

the isolation and control mechanism is made very simple and

fully implemented in hardware, on the FPGA board that is sep-

arated from the mCPU board running firmware-based security

management of the SC. This minimizes the threat from the

input data uploaded by untrusted sources. Further the untrusted

server nodes on the rack can only access the hardware queues

that store encrypted messages (i.e., the ciphertext data/code

message queue and the ciphertext configuration queue, see the

grey box in Fig. 3 (b)). Those queues are logically mapped to

each node’s own PCIe space by the PCIe ExpressFabric chips.

The FPGA logic does not implement the path for an external

node to access plain-text messages in another hardware queue

(i.e., the plaintext configuration queue), essentially eliminating

the possibility for out-of-bound access. Similarly, the proxy
node inside the HETEE box can only access the plain-

text hardware message queues (i.e., the plaintext data/code

message queue). The ciphertext queues and the plain-text
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queues are built in the FPGA programmable logic, each entry

of which contains pointers to specific messages that are stored

in two physically isolated DDR memory blocks.

The FPGA board assigns a pair of queues to each enclave,

one for encrypted data (in the grey box) and the other for

the corresponding plaintext (in the green box). These queues

are physically separated from other queues on the board.

Only the isolation and control mechanism, which is also fully

implemented in hardware, is allowed to access queues on both

sides. It runs AES to encrypt/decrypt the data from one queue

before moving the result to the other queue. The module also

performs authentication (random ID in the encrypted message)

and integrity check (AES-GCM) to ensure that an enclave only

receives correct messages from the authorized party (the one

uploading the computing task in our research).

Proxy node. The proxy node is also a stand-alone system

in the HETEE box and connected to the PCIe fabric. Each

enclave runs on a separate proxy node. This reduces the

surface for possible inter-task information leaks. During task

switching (or enclave destroy), the proxy node is forced to

reboot by the SC to load trusted images and reset its state.

Inside the HETEE enclave, the proxy node is responsible

for managing the accelerators dynamically allocated to the

enclave by the SC. It runs a simplified Linux and the user-level

software stack for accelerator and a typical AI runtime. Note

that the integrity of this stack is ensured by the SC once the

proxy node is rebooted and also the stack only serves the

current computing task. In addition, during the computation,

the proxy node cannot interact with the outside without

the mediation from the SC. This reduces the surface the

software stack exposes to the adversary, even when it contains

vulnerabilities. Also under the control is the side-channel

attack surface: unlike the prior approaches [15], which require

a CPU TEE (like TrustZone or Intel SGX) to work with a GPU

(possibly through its own TEE [16]), computing units and the

proxy node all run inside the same enclave, which allows

them to interact with each other in a highly efficient and also

secure fashion, with the communication between the server

and the units all hidden from a side-channel attacker.

The proxy node accepts the code and data messages

dispatched from the SC, runs the AI model written by the

remote user on its local AI software stack, and analyzes the

data contained in the data message by invoking the assigned

accelerators. The results are then packaged into a result

message sent to the SC, and eventually delivered to the remote

user through an encrypted channel.

As the major workloads on the proxy node usually

include the AI runtime as well as different AI models, and

the intensive computation is offloaded to the accelerators, the

proxy node needs CPUs with strong I/O capabilities, even

when their computing capabilities are relatively weak. There-

fore, in our research, we chose microserver as the proxy
node, which integrates low-end Xeon E3 processors. This

design can save both cost and power consumption, which in

turn increases integration density, allowing more microservers

to be put on a single board.

D. Trust Establishment

Secure Boot. The booting of HETEE starts from the chip boot

circuit on the FPGA, which loads the encrypted bitstream file

from the external boot flash memory. Then the measurement

logic on the FPGA verifies the integrity of the mCPU firmware

(with the security management code). After the SC subsystem

boots up, it evaluates the firmware of proxy nodes. Once

its integrity is confirmed, the firmware proceeds with a typical

secure boot process to check the proxy’s kernel image, which

further verifies the binaries of critical applications.

Remote attestation and key negotiation. Remote attestation

of HETEE follows the standard protocol used by SGX [92]–

[94] and Sanctum [65], [66], which is a combination of the

SIGMA [90] authenticated key exchange protocol and TCG’s

attestation protocol [103]. It supports mutual authentication

and establishment of a secure channel between the remote user

and a HETEE enclave. SIGMA is a popular key exchange

protocol that has undergone rigorous security analysis [91].

Like SGX and Sanctum, we integrate the SC measurement

and the enclave measurement (with the version number of the

SC bitstream, firmware, and proxy node software) into the

protocol. Since an enclave is created through a secure reboot,

its software state is measured with the hash values of the kernel

and applications verified during the boot.

Remote 
User

HETEE
Box

   Ga

   Gb, SCcert, SIGSCPrivAK(Ga,Gb,EM), 
MACSMKm(SCcert)

Ga=ga

   USERcert, SIGUSERPrivAK(Ga,Gb), 
MACSMKm(USERcert)

Gb=gb

Gab=(ga)b

SMKm=KDF(Gab,mSalt)
SMKs=KDF(Gab,sSalt)

Gab=(gb)a

SMKm=KDF(Gab,mSalt)
SMKs=KDF(Gab,sSalt)

Verify MACSMKm(SCcert)
Verify SC & Enclave

Verify MACSMKm(USERcert)
Verify User

Fig. 4. Remote Attestation and Symmetric Key Negotiation Protocol.
(Each HETEE platform includes two sets of public key pairs,
an Endorsement Key (EK) and an Attestation Key (AK) (see
Sec. III-E). The SCcert contains the SC measurement and is
signed using the EK private key. The enclave measurement
is signed with the AK private key. The trust of AK and EK
is derived from the certificate chain generated from the
HETEE vendor’s root key and can be verified by the user.
EM: enclave measurement; KDF: Key Derivation Function;
MAC: Message Authentication Code; mSalt and sSalt are
cryptographic random numbers; Ga, Gb and Gab are used for
the Diffie-Hellman key exchange. USERcert is the user’s
public key certificate.)

The HETEE attestation protocol is shown in Fig. 4. Mes-

sage � and message � implement Diffie-Hellman key ex-

change. Message � is used by the HETEE platform to send

its certificates and report measurements to the remote user

for identification and authentication. It also carries a message

authentication code MACSMKm(SCcert) for the remote user to

check its integrity. Similarly, message � is for the remote

user to send her certificate to the HETEE platform, which

also includes MACSMKm(USERcert) for integrity check.

Similar to other TEE techniques (such as Privacy CA

of TCG [103], [115], Sanctum [65], [66], Graviton [15],
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SecTEE [117] and Keystone [64], [114]), the proposed attes-

tation protocol requires trusted CA for secure certificate dis-

tribution. Intel SGX adopts Enhanced Privacy ID (EPID) [93],

an enhancement of the Direct Anonymous Attestation (DAA)

algorithm [116], which does not need trusted CA but still relies

on a trusted party (i.e., Intel) as the Issuer for key distribution.

Our current design assumes that certificate distribution of

the attestation protocol is secure. Prior research shows that

both CA-based and EPID-based protocols are vulnerable to

the Cuckoo attack [118] in which the adversary relays the

attestation messages to a TEE under his physical control.

The attestation of the HETEE box is implemented on SC,

which is included in our TCB and protected from physical

attacks for controlling the box (see Sec.VII). Also, solutions

have been proposed for mitigating the threat of the Cuckoo

attack [119], [120], which could be incorporated into our

attestation protocol.

E. Key Management in SC

Endorsement Key (EK) and Attestation Key (AK) for
each HETEE platform. Each HETEE platform includes two

sets of public key pairs, an Endorsement Key (EK) and an

Attestation Key (AK). These keys are the basis to authenticate

the platform, and will never leave the FPGA chip at any time.

The private key of EK and the EK certificate are encoded by

the vendor into the encrypted FPGA bitstream. The EK is only

used by a dedicated signing logic to sign the AK and the SC
measurement for creating an AK certificate. The AK is derived

from the random number generator module on the FPGA each

time it is powered up, and the private key of the AK and the

AK certificate can only be accessed by a dedicated attestation

logic module which is specifically used to sign Diffie-Hellman

parameters and enclave measurements, for remote attestation

and authentication. The EK is only used when generating the

AK certificate, and all credentials for remote attestation are

generated using the AK. This certificate chain design limits

the usage of the EK, thereby reducing the risk of its exposure,

since the key is the root of trust for the platform.

Two sets of symmetric keys for each User. SMKm and

SMKs are generated during remote attestation. The SMKm is

used for integrity check with MAC (message authentication

code) during remote attestation. The SMKs is used to build

the secure channel between the user and the HETEE box.

Symmetric key for hard disk. The SMKdisk is used for

data protection inside the HETEE box. That is to say, all the

data on the internal disks of the HETEE box are encrypted.

The (de)encryption engine locates in the disk controller. Note

that commercial SSD controllers usually have such an engine

for line-speed data protection. The SC FPGA generates the

SMKdisk and sends it to the disk controller. The key is not

stored on the disk by the disk controller, and instead is thrown

away when the system is power off for data protection.

F. Sealing, Management and Maintenance of HETEE Box

Sealing. The chassis of the HETEE box is designed to be

tamper-resistant, based upon the techniques used by proven

products [97], [104], [105], [108], which can meet the NIST

FIPS 140-2 security Level 3 or 4 [106], [107]. A typical imple-

mentation includes a microcontroller (MCU) system and a set

of sensors (e.g., pressure, vibration and temperature etc) for

access control management and intrusion detection/response.

The HETEE box provides a USB interface for authentication

based on the USB key. When the chassis is opened without

authorization, the pressure sensor notifies the MCU. Then the

MCU actively empties the bitstream located in the FPGA-

connected flash chip and power down the entire system.

When powered up again, the FPGA’s security boot mechanism

detects such exception through verification, even when the

attacker replaces the bitstream. In this case, the FPGA module

will stop booting. The attacker cannot get sensitive content

from the volatile memory, and nor can he touch the content of

the encrypted data on the disk since the disk key is destroyed.

The HETEE box can be sealed by the system vendor, just

like HSM devices, when the data center is not trusted with

the data it processes. Alternatively, this can be done by the

authorized party in the data center, to prevent the access from

unauthorized members and mitigate insider risks.

Maintenance. If the HETEE box has a hardware failure

or needs to upgrade its software (e.g., firmware on SC, AI

runtime and Linux on proxy node, as well as GPU firmware),

an authorized administrator can open the chassis properly for

maintenance using the USB key. Here the administrator can be

the vendor of the HETEE box, or the third party such as the

authorized member in a data center who is allowed to access

the protected data. Anyone else even the cloud provider is not

permitted to open the chassis.

Cooling. The HETEE box uses a standard server blade chassis

enhanced with protection against unauthorized access (as de-

scribed before), which supports high-performance server level

cooling mechanisms, such as air channel design, front/rear

thermal vent, fans with speed control, air or water cooling,

which are common to the server system. This enables the

HETEE box to be easily deployed in data center.

IV. HETEE PROTOTYPE SYSTEM

PEX9797 
Chips

(b) HETEE Box (a) PCIe ExpressFabric backplane

(C) Security Controller

GTX TITAN X GPUs

(d) Proxy Nodes

X86 CPU board

FPGA co-processor

Node 0

Node 1

Fig. 5. HETEE prototype system.

HETEE API SC

AI runtime(Infer & Train Engine)

Proxy Node

TensorFlow/Pytorch/MXNet...

CUDA

Proxy Node
GPU Driver GPU

Node 
Server

HETEE BOX

)

Dog 
& 

Cat

Dog & Cat

HETEE A

Dog & Cat

Fig. 6. Confidential AI service provided by HETEE system.
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The HETEE prototype is shown in Fig. 5. The HETEE box

(Fig. 5(b)) uses two Broadcom PEX9797 chips to build the

PCIe ExpressFabric backplane shown in Fig. 5(a), which has

15 PCIe slots. As an industry-leading ExpressFabric platform,

the PEX9700 series switch chips provide high performance,

low latency, and scalable and cost-effective connections based

on the PCIe Gen3 protocol. They also provide the ability to

share I/Os, and to enable multiple hosts on a single PCIe-based

network using standard PCIe enumerations. PEX9797 has the

top I/O capabilities in its series [25].

The current HETEE box includes 1 SC node, 4 proxy
nodes, and 4 Nvidia GTX TITAN X GPUs. Both the SC and

the proxy nodes are implemented as custom boards shown

in Fig. 5(c)(d), each of which is an independent system. These

boards and GPU cards are plugged into the PCIe slots of the

PCIe Fabric backplane. These nodes can communicate through

either Tunneling Window Connection (TWC) or ethernet-like

DMA as standard hosts and/or end-points.

TABLE I
HETEE PROTOTYPE SYSTEM.

Component Hardware Software
Security Intel Xeon-E3 1220V6 Tailored coreboot 4.10

Controller DDR4 16GB 2400MHz with security management
Xilinx Zynq FPGA code, binary size is < 300KB

TensorFlow 1.11.0
Proxy Intel Xeon-E3 1220V6 CUDA 9.0
Node DDR4 16GB 2400MHz Nvidia Driver 396.54

CentOS 7.2
GPU Nvidia GTX TITAN

PCIe Fabric PEX9797

Table I describes the major components of the SC and the

proxy nodes. The SC includes an Intel Xeon-E3 CPU,

which runs the security management functions (configure PCIe

expressfabric chip) on the customitzed open-source firmware

(coreboot [87]) and an Xilinx Zynq FPGA card, which is

in charge of the remote attestation and (de)encryption. The

proxy node integrates an Intel Xeon-E3 CPU and runs a

complete GPU software stack and Tensorflow 1.11.0.

To accommodate the standard Nvidia GPU acceleration

card (3U height), the HETEE box is currently a 4U and

half-length chassis. The height and length of the chassis

could be expanded to integrate more accelerators with more

PEX9797 switching chips. This prototype system does not

include tamper resistance functionality as we use it mainly

for performance evaluation in this study.

V. CONFIDENTIAL AI COMPUTING SERVICE

The HETEE system enables confidentiality for applications

requiring privacy. Without losing generality, this paper shows

a case of safeguarding confidential AI models for AI services

running on top of a pool of GPU resources as shown in

Fig. 6. We used the popular ONNX open format [35] to

describe AI models. With ONNX, AI developers can easily

move models from one state-of-the-art tool to another and

choose the combination that is best for a target application.

AI inference. For an inference task, the remote user first

authenticates and exchanges keys with the HETEE box, estab-

lishing a trusted relationship and obtaining a shared symmetric

key for secure communication. The remote user encrypts the

AI model with the shared symmetric key and sends it to the

HETEE box. Upon receiving the encrypted AI model, the SC
decrypts it and sends it to the AI runtime (TensorFlow in

our prototype system) on the proxy node. The AI runtime

parses the model and starts the corresponding inference engine.

The remote user then can begin to send encrypted data to the

HETEE box in batches. The inference engine gets the data

from the SC which performs data decryption, and invokes the

corresponding GPU kernel to process the received data.

AI training. Similarly for a training task, after the user

authenticates and exchanges keys with the HETEE box it sends

in the initial neural network structure and also provides addi-

tional training-related configurations such as hyper-parameters

(such as learning rate, epoch, batch size, etc.) and selected

optimization algorithms (such as SGD, ADAM, etc.). After

receiving the message, the SC starts the AI runtime to build

the training engine. The remote user then begins to move a

stream of encrypted data to the HETEE box. The training

engine on the proxy node performs the forward pass, the

backward pass, and so on for each batch of received data, and

returns the current loss and part of the intermediate network

state to the remote user in the encrypted form. The return

values are evaluated by the remote user to determine the

convergence of the network. The training process continues

until the network converges or diverges. The remote user then

sends out a termination command to inform the training engine

that the training task is finished.

VI. EVALUATION

A. Methodology

AI workloads. We trained 5 classical neural networks on

ImageNet 2012 [53], which contains millions of images in

1000 categories. We used 138 GiB training images of Ima-

geNet 2012 as our training dataset, while 6 GiB of images

were used as validation dataset. Besides, the test data set for

inference included 13 GiB of images. The number of layers of

the tested networks ranged from 16 to 152, with the number

of parameters between 5 million and 138 million. Our choice

covered typical neural networks from small scale ones to large

ones, with 5 different batch sizes selected as network inputs for

each network. Table II summarizes the details of each model.

We ran the inference and training workloads on our HETEE

prototype described in Sec. IV.

Since the HETEE system only affects the communication

path and software stack partition, it does not change the

existing algorithms. Therefore, the HETEE system does not

have any impact on the classification accuracy, thus our

experiments mainly focus on evaluation of the throughput and

latency, as well as the overhead of hardware modules such as

data encryption and decryption.

B. Performance analysis

Compared to a standard GPU server (X86 CPU + GPU),

the HETEE system provides confidential computing services

while inducing longer message transfer paths, additional data
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TABLE II
AI WORKLOADS.

Model Model Para- Layers Image Typesize meters size
VGG16 [54] 500 MiB 138 M 16 224x224x3 1K

GoogLeNet [55] 28 MiB 5 M 22 224x224x3 1K
ResNet50 [56] 100 MiB 25 M 50 224x224x3 1K

ResNet101 [56] 150 MiB 44 M 101 224x224x3 1K
ResNet152 [56] 200 MiB 60 M 152 224x224x3 1K

forwarding and pre-processing. Here we report a study on the

throughput and the latency overhead of our implementation

by running a set of DNN workloads (Table II), as well

as its scalability under the elastic resource allocation. For

this purpose, we utilized as a baseline the same workloads’

performance on a standard GPU server, with the same GPUs.
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Fig. 7. HETEE throughput overhead on single GPU with different batch sizes.

Throughput and latency evaluation on a single GPU. The

throughput overhead of the HETEE system normalized to the

baseline is shown in Fig. 7. It can be seen that the throughput

overhead is 6.95% for the inference task and 0.91% for the

training task on average when the batch size is 8. In this case,

the GPU utilization is around 80%. For most of the workloads

in our evaluation, the throughput overhead is under 5%. Such

results demonstrate that the software and hardware co-design

of HETEE is balanced. One exception is the GoogLeNet when

it was used for inference, since the size of GoogLeNet is much

smaller than others (its network model is only 28 MiB, and

only has 22 layers). The smaller computing time amplifies the

cost of data transmission, thereby affecting the throughput.

Such an impact of model size on throughput can also be

observed from ResNet, when its layers grows from 50 to 152.

Fig. 8 describes the latency overhead of the HETEE system.

The Y axis shows the latency and its breakdown, and the

0

100

200

300

400

500

600

700

800

900

1000

4 8 16 32 64 4 8 16 32 64 4 8 16 32 64 4 8 16 32 64 4 8 16 32 64

VGG16 GoogLeNet ResNet50 ResNet101 ResNet152

La
te

nc
y 

an
d 

O
ve

rh
ea

d 
(m

s)

Compute Preprocess De/Encryption Transfer

37.01%

41.85%

41.20%

47.03%

48.01%

51.70%
54.35%

59.74%

66.77%

72.19%

50.62%

47.89%

49.39%

57.65%

61.53%

39.51%

39.55%

41.91%

45.03%

50.19%

30.25%
31.18%

32.78%

37.43%

40.92%

(a) Inference

0

200

400

600

800

1000

1200

1400

1600

1800

4 8 16 32 64 4 8 16 32 64 4 8 16 32 64 4 8 16 32 64 4 8 16 32 64

VGG16 GoogLeNet ResNet50 ResNet101 ResNet152

La
te

nc
y 

an
d 

O
ve

rh
ea

d 
(m

s)

Compute Preprocess De/Encryption Transfer

3.86%
5.89%

10.39%

16.07%

21.91%

33.49%
39.28%

42.72%

50.47%

55.30%

16.79%
22.14%

29.11%

32.18%

35.54%

10.98%
14.08%

18.90%

22.98%

25.85%

8.20%
11.32%

14.75%

17.26%

19.66%

(b) Training

Fig. 8. HETEE latency overhead on single GPU with different batch sizes.

number on top of each bar is the latency overhead normalized

to its baseline. When the batch size is 8, the average inference

latency is 42.96% compared to the baseline, and the average

training latency is 18.54%. In this case, the GPU utilization

ranges from 85% to 92%. A typical confidential DNN task run-

ning in HETEE takes 4 major steps, including pre-processing

(image decoding), GPU execution, (de)encryption, and data

transfer (from local node to SC, and from SC to proxy
node etc). With the same delay caused by pre-processing

and GPU execution as that of the baseline setting, HETEE

introduces a new overhead for (de)encryption and additional

data transfer. As we can see, the data transfer time continues to

increase as the batch size grows, while the (de)encryption time

is small and stable. This explains that the latency overhead is

positively correlated with the batch size. Since the intensive

computation overshadows the cost of data transfer, we observe

that the proportion of the latency overhead in the training time

is smaller than the one in the inference time.

Scalability evaluation. The HETEE system supports the elas-

tic allocation of accelerator resources. Multiple accelerators

can be dynamically assigned to one enclave for speedup. Ta-

ble III shows the scalability of HETEE. Two main conclusions

can be drawn: (1) The elastic resource allocation mechanism of

HETEE can significantly improve the performance of a single

HETEE enclave. For most workloads, multiple GPUs achieve

acceleration compared to a single GPU. In particular, the

performance of 2 GPUs is 1.64x of a single GPU on average,

and 4 GPUs achieve a 2.59x speedup on average; (2) HETEE

does not affect scalability compared to the baseline. Taking

ResNet152 as an example, the scalability of the HETEE

system remains essentially the same as the baseline system.
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TABLE III
HETEE INFERENCE THROUGHPUT SCALABILITY EVALUATION (NORMALIZED TO THE BASELINE)

Model
Batch size 4 8 16

Number of GPU 1 GPU 2 GPUs 4 GPUs 1 GPU 2 GPUs 4 GPUs 1 GPU 2 GPUs 4 GPUs

VGG16
Baseline 1.00 1.75 2.52 1.00 1.58 2.74 1.00 1.84 3.02
HETEE 0.97 1.65 2.48 0.97 1.53 2.56 0.96 1.67 2.68

GoogLeNet
Baseline 1.00 1.37 1.60 1.00 1.47 1.76 1.00 1.29 1.72
HETEE 0.94 1.33 1.45 0.81 1.38 1.49 0.63 1.02 1.24

ResNet50
Baseline 1.00 1.66 2.73 1.00 1.53 2.39 1.00 1.69 2.73
HETEE 0.96 1.61 2.46 0.96 1.54 2.34 0.90 1.62 2.39

ResNet101
Baseline 1.00 1.73 2.89 1.00 1.65 2.71 1.00 1.64 2.76
HETEE 0.98 1.63 2.82 0.98 1.59 2.58 0.97 1.56 2.70

ResNet152
Baseline 1.00 1.72 3.26 1.00 1.79 3.10 1.00 1.67 3.35
HETEE 0.98 1.57 2.99 0.98 1.61 2.82 0.98 1.61 3.28

Average
Baseline 1.00 1.65 2.60 1.00 1.60 2.54 1.00 1.63 2.72
HETEE 0.97 1.56 2.44 0.94 1.53 2.36 0.89 1.50 2.46

However, the absolute multiplication effect of multiple GPUs

is not obvious, because 4 GPUs (with 4* PCIe x8: 32 Lanes)

need to communicate with the same proxy node CPU that

has only 1 PCIe port (PCIe x4) in our prototype. It thus causes

traffic contention. This problem can be solved by increasing

the I/O bandwidth connected to the PCIe fabric.

C. Resource utilization of FPGA

The security and isolation related functions in the SC such

as the (de)encryption modules, the remote attestation and

message queue scheduling modules, are implemented inside

the Xilinx Zynq FPGA chip. The Vivado synthesis report

shows that these functions consume 52.54% LUT and 43.70%

FF programmable resources, which run at the frequency of 100

MHz. For the decryption and hardware data copy module, its

average bandwidth is 267.67 MB/s and the latency is 44.83

ms. The encryption and hardware data copy module has an

average bandwidth of 268.87 MB/s and a latency of 44.63ms.

VII. SECURITY ANALYSIS

In this section, we present the security analysis on HETEE,

from the perspectives of its TCB and attack surface, as well

as the major protection.

TCB. The TCB includes the hardware, firmware and software

components of the Security Controller (SC) 1, as follows:

• Hardware components on the SC’s FPGA device. These

components include key generation, message (de)encryption

& Parsing & Dispatch engines and logic for secure boot and

reset of the proxy nodes and accelerators. Also we trust the

FPGA device’s encrypted bitstream, whose integrity is ensured

by the manufacturer’s secure boot protection (see Sec. III-D).

• Firmware on the SC’s mCPU. Also in the TCB is the

firmware for isolation/enclave management (configuring the

PCIe switch, secure reboot of the proxy node), and code

1HETEE is designed with the focus on protecting PaaS platform. Under this
service model, HETEE is meant to provide the following security guarantees:
an enclave user’s data is protected (1) from the enclaves on other proxy nodes,
(2) from past and future users of the same proxy node (3) from untrusted
hosts and (4) from the cloud provider. These guarantees are achieved by the
physical isolation that separates different enclaves and an enclave from hosts,
secure rebooting that checks the integrity of the platform software to avoid
infection from past users and chassis-level protection to detect unauthorized
physical access to the HETEE box. Since none of such protection has been
implemented on the proxy node, we consider the node outside the TCB.

for remote attestation on mCPU. Particularly, we implemented

the isolation and enclave management module on a tailored

open-source coreboot [87] to avoid using a more heavyweight

Linux OS. Our implementation is only 300K bytes, compared

with over 30M bytes of a Linux kernel.

• GPU firmware. We assume that the firmware does not

include malicious code and its integrity is protected. The

firmware of a modern GPU is under secure boot and read-

only protection [88], [96]. For older GPU devices, the flash

drives [89] that keep their firmware can be configured as read-

only, by setting its write protection pin.

• Micro Control Unit for the tamper-resistant HETEE box.

MCU is used by the HETEE box to detect physical tamper

attempts and remove the sensitive FPGA bitstream, as utilized

by existing tamper-resistant products (Sec. III-F).

Protection under the TCB/assumptions. HETEE compo-

nents are protected or prevented from misbehaving under the

TCB and assumptions, as summarized below:

• Root of trust. The endorsement key for trust establishment

is the root of trust of a HETEE platform. It is kept as a

constant in the encrypted FPGA bitstream. The integrity and

confidentiality of the bitstream is protected by the FPGA

synthesis tool and the dedicated circuit of the FPGA bitstream

decryption engine.

• Trust chain establishment. Each time a HETEE platform is

restarted, the FPGA first powers up and loads the encrypted

bitstream file in its boot flash to the logic circuit. Then a

dedicated measurement logic on the FPGA will ensure that the

SC is initiated with trusted firmware and security management

code (Sec. III-D).

• Proxy CPU firmware protection. To protect proxy firmware,

the SC includes a proactive firmware verification mechanism:

the SPI pin of the CPU boot flash chip is routed to the I/O

pins of the FPGA, which allows the FPGA to measure the

firmware in the flash chip and verify its integrity.

• Protection from a compromised proxy node. The proxy
node is isolated from the SC and can only access its task

queue. Therefore, a compromised proxy cannot tamper with

the SC in the absence of security flaws. Further all HETEE

enclaves (each managed by a proxy) are physically separated

from each other through PCIe. During task switches, all
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accelerators and proxy nodes will be reset to secure states

(assuming that GPU firmware is trusted, as discussed below).

• GPU firmware protection. Today’s GPU vendors have al-

ready taken measures to protect the firmware. For example,

the latest GPUs support firmware signature checking, which

prevents unauthorized firmware modification [88], [96]. For

some of the older generation of GPUs, the flash chip storing

the firmware can be configured as read-only using its write

protection (WP) pin [89] to defeat a tampering attack.

• Defense against physical attack. The HETEE box is pro-

tected by mature tamper-resistant techniques, and a typical

solution can be found in Sec. III-F.

Comparison with other approaches. We compare our as-

sumptions with those underlying other TEE solutions support-

ing GPUs, including Graviton and HIX.

• Software stack. In both Graviton and HIX, the GPU driver,

CUDA runtime and deep learning framework run in the en-

clave on the CPU. They rely on the whole software stack (GPU

driver, CUDA, tensorflow, etc.) for data protection, which is

problematic given the large side-channel attack surface (cache,

memory, CPU usage, etc.) exposed by today’s CPU enclaves

(SGX, TrustZone, etc.). Further, the communication between

the CPU TEE and the GPU TEE might also leak information.

By comparison, HETEE enclaves are physically isolated from

untrusted nodes and from each other, so we do not need to

trust such software to be side-channel free.

• GPU firmware. Like HETEE, Graviton and HIX also need

to trust GPU firmware. When a GPU is assigned to a different

enclave, it will also be cleaned up to prevent information leak.

• Physical attack protection. HIX does not work under physi-

cal attacks on PCIe interconnects and GPUs. Graviton protects

against physical attack but needs to modify the GPU chip.

To support unmodified GPU, HETEE adopts chassis-level

protection as used in commercial HSM products.

Integrity protection. Like other TEEs (e.g., SGX, Sanctum),

HETEE protects the integrity of an enclave program’s execu-

tion: that is, the program’s execution trace is only determined

by the program’s input provided by the enclave user, not by

the program in a different enclave or in an untrusted host [95];

further the integrity of the enclave user’s input is also protected

by integrity check and authentication.

Trusted path between remote user and HETEE enclave.

Remote attestation of the HETEE system uses a standard re-

mote authentication and key agreement mechanism to support

mutual authentication between the remote user and the HETEE

platform, and negotiate a shared secret between them which

can be further used to protect the subsequent communication.

The enclave measurement report for the remote attestation

includes the SC’s own metrics and the HETEE enclave metrics

(Sec. III-D). The shared secret is used to establish a secure

channel between the user and the enclave.

Attack surfaces. Given the small attack surface (physically

isolated enclave, no memory, cache, CPU sharing with the

untrusted hosts and across enclaves), the adversary running

on the host node or in an attack enclave can only observe

the timing between an enclave’s reception of its input and

generation of its output, and packet size, sequence of the

communication with the enclave user. Such information leak

is way below that of other TEE designs. Covert channels are

currently out of the scope of the paper (Sec. II-C).

VIII. DISCUSSION

HETEE box vs. a separate server. An intuitive alternative

is to deploy a separate server (e.g., standard GPU servers) in

the data center as a TEE, and other nodes access its dedicated

heterogeneous computing resources through an Ethernet net-

work. Compared with a standard but separated server, HETEE

is much securer and can be cheaper (given the same level of

protection). First of all, our approach is characterized by the

design to achieve a thin TCB. A separated server, without

intensive customization, will have a thick software stack.

Secondly, HETEE effectively prevents the malicious external

access to the internal resources of the HETEE box through

the two-level hardware strong isolation mechanism. Finally,

it enables task-level isolation through a restart mechanism

to prevent possible information leaks or malicious attacks

between tasks. These mechanisms do not exist in the design

of standard heterogeneous computing servers.

Security related cost analysis of HETEE. The cost of the

HETEE box can be broken down into five major components:

PCIe switch backplane, accelerators, the SC node, the proxy
nodes as well as self-destructing module. As mentioned

earlier, since such a pooled resource architecture is now

increasingly used in the data center, PCIe switch backplane

and centralized GPUs can be considered as existing resources

that do not count towards the security cost of the HETEE

box. Therefore, the security related cost of the HETEE box

comes primarily from the SC, the proxy nodes and the

self-destructing module.

0.8% 3.0%
0.5%

94.0%

1.7% 0.5% 2.1%
0.3%

95.9%

1.2%3.4%
12.4%

2.0%

75.1%

7.1%

(a) Integrating
TITAN X GPU 

(b) Integrating
Tesla P40 GPU

(c) Integrating
Tesla V100 GPU

Fig. 9. HETEE Box cost analysis. ( Intel Xeon-E3 1220V6 Chip: $213
[57], Xilinx Zynq Chip:$60 [58], 16GB DDR4 2400MHz ECC: $548
[59],Self-destructing module:$500 [34], Nvidia GTX TITAN X:
$1150 [60], Nvidia Tesla P40: $5999 [61], Nvidia Tesla V100:
$8799 [62], Broadcom PEX9797 Chip: $590 [63]; )

A typical configuration of the HETEE box includes 1

Security Controller, 4 proxy nodes, and 16 GPUs. We

choose three widely used GPUs in AI computing, and the

cost breakdown is shown in Figure 9. In the case of the self-

destructing module, we consider one practical solution that

includes a set of pressure sensor modules, MCU control board,

and disks with security protection functions. It can be seen that

the security cost of the HETEE box takes about 17.8% of the

total HETEE box for TITAN X GPU, and only 2.9% for the
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Tesla V100 GPU. When more GPUs are integrated (e.g. 32),

the portion of the security expense will go further down.

Extending HETEE to support the SaaS model. HETEE

can be extended to support software-as-a-service (SaaS, in

which the enclave creator also provides application software

such as a genetic testing program for disease discovery [110],

[111]), when the application itself does not include secret. The

user can verify the integrity of the software through remote

attestation, and HETEE protects the user data (e.g., DNA data)

uploaded from exposing to the unauthorized party (e.g., the

cloud provider who creates the enclave through HETEE).

In the case that the cloud provider’s application software

does contain secrets (e.g., secret parameters of a ML model)

and needs to protect from the enclave user, however, an

application-specific component can run on the SC for input

check and sanitization [112], so as to protect the software

against memory attacks from malicious inputs uploaded by the

enclave user (which can lead to the exposure of the software’s

secret). When the application software itself is unknown to the

enclave user and therefore cannot be audited through integrity

check, a sandbox (similar to Ryoan [113]) could be used

to prevent the unauthorized leak of user data. In this case,

however, we needs to include the sandbox in the TCB.

IX. RELATED WORKS

Isolated Execution. Mainstream processor vendors have im-

plemented TEEs in some of their chip products, such as

Intel Software Guard Extensions (SGX) [3], AMD Secure

Encrypted Virtualization (SEV) [4] and ARM TrustZone [5].

In addition, based on the concept of open-source security,

Keystone [64] and Sanctum [65]–[67] are proposed for RISC-

V processor. These TEEs generally isolate a secure world from

the insecure one, and the protected data can be processed

in such secure world. However, none of those TEEs can

truly support CDI computing tasks which widely adopt a

heterogeneous architecture. For example, Intel SGX does not

support trusted I/O paths to protect the data transmissions

between enclaves and I/O devices. Although ARM TrustZone

can support trusted I/O paths for certain peripherals in the

ARM ecosystem, it is noted that TrustZone still does not truly

support heterogeneous computing units like GPU.

Trusted paths. Graviton [15] modifies the existing GPU chips

via enhancing the internal hardware command processor, to

support trusted execution environments on GPUs. HIX [16]

extends an SGX-like design to enable secure access to GPU

from the CPU enclave, which needs to modify the MMU and

PCIe Root Complex on the CPU chip. By comparison, HETEE

does not require any changes to existing commercial CPUs or

accelerators. SGXIO [68] is a generic trusted path extension

for Intel SGX. Trusted paths are established via a dedicated

trusted boot enclave. However, the capacity limitation of the

SGX enclave prevent SGXIO being widely used for high-

performance accelerators like off-chip GPUs. Besides, there

are several prior studies that propose specific trusted paths

for some extertnal devices but not PCIe accelerators. For

instance, Zhou et al. propose a trusted path to a single USB

device [69]. Yu et al. demonstrate how to build a trusted path

for display [70]. Filyanov et al. discuss a pure uni-directional

trusted path using the TPM and Intel TXT [71].

Privacy preserving deep learning. Nick Hynes et al evaluated

two types of secure AI computing [72]. One scenario is

to compute the entire AI workloads inside SGX enclaves,

which cannot utilize accelerators. Similar work can be found

in other studies [83], [84]. Another scenario is the Slalom

solution [73]. It needs to decompose the AI model network

into two parts, in which the upper control flow part runs inside

the SGX enclave and is tightly protected, while some non-

privacy-sensitive basic computations is thrown to the untrusted

GPU for acceleration. However, splitting AI networks result in

possible accuracy decrease, while our HETEE programming

model securely encapsulate the whole AI network, without

any change of the AI structure, so the accuracy will not be

affected. Researchers also proposed to protect the privacy of

AI networks by introducing noise [85].

X. CONCLUSION

Large-scale confidential computing is driven by huge de-

mands in the real world. However, it still cannot be supported

by today’s Trusted Execution Environment (TEE), due to the

lack of scalable and effective protection of high-throughput

accelerators like GPUs. To address these problems, this pa-

per presents the first Heterogeneous TEE design that can

truly support large-scale compute and/or data intensive (CDI)

computing, without any chip-level change. Our approach,

called HETEE, is a device for centralized management of all

computing units of a server rack. It is uniquely designed to

work with today’s data centers and clouds, leveraging modern

resource pooling technologies to dynamically compartmental-

ize computing tasks, and enforce strong isolation and reduce

TCB through hardware support. More specifically, HETEE

utilizes the PCIe switch fabric to allocate its accelerators to

the server node on the same rack for a non-sensitive CDI task,

and move them back into a secure enclave in response to the

demand for confidential computing. We implemented HETEE

on a real hardware system, and evaluated it with popular

neural network inference and training tasks. Our evaluations

show that HETEE can easily support such rack-scale confi-

dential computing tasks with a small performance overhead

and exhibits good scalability when elastically using multiple

accelerators. Down the road, we plan to further evaluate our

design and implementation through formal verification, and

investigate hardware-software separation of the design.
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