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ABSTRACT
Research on side-channel leaks has long been focusing on the infor-
mation exposure from a single channel (memory, network traffic,
power, etc.). Less studied is the risk of learning from multiple side
channels related to a target activity (e.g., website visits) even when
individual channels are not informative enough for an effective
attack. Although the prior research made the first step on this di-
rection, inferring the operations of foreground apps on iOS from
a set of global statistics, still less clear are how to determine the
maximum information leaks from all target-related side channels
on a system, what can be learnt about the target from such leaks
and most importantly, how to control information leaks from the
whole system, not just from an individual channel.

To answer these fundamental questions, we performed the first
systematic study on multi-channel inference, focusing on iOS as
the first step. Our research is based upon a novel attack technique,
called Mischief, which given a set of potential side channels related
to a target activity (e.g., foreground apps), utilizes probabilistic
search to approximate an optimal subset of the channels expos-
ing most information, as measured by Merit Score, a metric for
correlation-based feature selection. On such an optimal subset, an
inference attack is modeled as a multivariate time series classifica-
tion problem, so the state-of-the-art deep-learning based solution,
InteceptionTime in particular, can be applied to achieve the best
possible outcome. Mischief is found to work effectively on today’s
iOS (16.2), identifying foreground apps, website visits, sensitive IoT
operations (e.g., opening the door) with a high confidence, even
in an open-world scenario, which demonstrates that the protec-
tion Apple puts in place against the known attack is inadequate.
Also importantly, this new understanding enables us to develop
more comprehensive protection, which could elevate today’s side-
channel research from suppressing leaks from individual channels
to controlling information exposure across the whole system.
∗The first two authors contributed equally to this work.
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1 INTRODUCTION
On a computing system, the occurrence of any event, such as run-
ning an IoT app on a smartphone to unlock the door, will inevitably
produce side effects – changes in CPU, memory and network use
etc., which could be observed by the party not supposed to know
anything about the event, such as a third-party app. These side
effects, often including resource access patterns and signals gener-
ated by the access, are channels from which protected information
can be inferred. Complete removal of such side channels is infea-
sible for most systems, due to either unbearable cost incurred by
additional resource uses for covering access patterns (e.g., a large
amount of random traffic to hide a timing channel) or a significant
downgrade of the system’s functionalities by strict control on data
release (e.g., noise added to public statistics, rendering them useless).
Addressing this challenge today relies on the common wisdom that
the side channel leak can be controlled by suppressing information
exposure on each channel (timings, packet size, memory access
pattern, power consumption, etc.), to the extent that an attack on
the channel becomes less likely to succeed: e.g., limiting the rate
of releasing CPU usage, so it more likely reflects the aggregated
effect of multiple processes, instead of a specific one [1, 2]. A fun-
damental problem is that associated with the target event are often
not a single channel, but multiple ones across the whole system:
running an app leaks information through use patterns of CPU,
GPU, memory, network, storage and others. As a result, the side
channel leaks of the event should be measured by the joint effect
of all these channels, while the existing approaches focusing on
individual channels are inadequate at best, as the collective infor-
mation from the minimum exposure of individual channels could
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still be significant, and ineffective at worst, when weakening a side
channel might accidentally strengthening another one [46].
Multi-channel inference on iOS. The first attempt that explicitly
looks across multiple channels is a side-channel analysis on iOS [53].
Unlike Android, which is known for leaking per process informa-
tion through its procfs [10, 25, 26, 50, 55], iOS is more aggressive in
controlling information exposure, only releasing through its APIs
global statistics such as CPU, memory, and storage usages. These
statistics are summaries of multiple processes’ operations and each
of them is considered to be too noisy for finding any useful infor-
mation about an individual process. However, the prior research
shows that when extracting features from these channels using
symbolic aggregate approximation and bag-of-pattern representa-
tion, and collectively analyzing the features using a simple Support
Vector Machine, sensitive information such as foreground running
apps can still be inferred [53]. These findings have forced Apple to
modify the iOS kernel to reduce the rate of releasing such global
statistics to mitigate the threat [1, 2].

Still less clear, however, is the adequacy of Apple’s current pro-
tection – whether there exist other channel combinations from
which the same or even more sensitive information can be inferred.
Actually, the prior study just provides an example to demonstrate
that the collective information from noisy individual channels can
also have serious privacy implications. Still we do not know the
answers to more fundamental questions: given a computing system,
how to determine the relations among different side channels on the
system? can we find an optimal subset of these channels to estimate
the maximum amount of information exposed from the system?
Most importantly, how can we control the side-channel leak from
the whole system, not just individual channels? Further little has
been done so far to understand what inference techniques work
most effectively on the heterogeneous channels, which essentially
is a learning problem. Solutions to these problems will elevate the
current side-channel research, from mitigating leaks from a single
channel to protecting privacy of the whole system.
Multi-side-channel learning. In our research, we made a further
step to analyze the whole-system side-channel risk, focusing on
cross-app information leaks on iOS. At the center of our analysis is
an attack called Mischief (MultI-Side-CHannel learnIng for sEcret
inFerence), which first identifies all iOS APIs potentially exposing
sensitive information and then utilizes Merit Score [24] to analyze
joint information leaks from different combinations of these side
channels and an algorithm to search for the optimal subset of the
channels disclosing most information. Also we formulate inference
on the optimal subset as a Multivariate Time Series (MTS) clas-
sification problem, and apply the state-of-the-art MTS classifiers,
including Rocket [15] and InceptionTime [21], to solve the problem.

In our study of the iOS 16 SDK, we executed an automated
assessment, unearthing 1,053 potential side channels distributed
across 83 APIs. Notably, each API represents a structured
output, possessing several outputs and consequently, multiple
channels, which could potentially disclose sensitive data. Running
Mischief on these channels, further we identified a subset
of channels that leak out the most information for a given
attack purpose, as measured by their joint Merit Score: for
example, when the purpose is to identify foreground apps, 7

channels (wire_count, cow_faults, en0_ibytes, en0_obytes,
en0_ipackets, en0_opackets, and user_time) are in the
subset, while for inferring the websites visited by Safari, our
approach selects 9 channels (free_count, inactive_count,
wire_count, internal_page_count, en0_ibytes, en0_obytes,
en0_ipackets, en0_opackets, and user_time). Mischief further
learns from these channels sensitive cross-app information,
showing that indeed the remedy Apple put in place is fragile.
Specifically, we found that an unprivileged malicious app is able to
accurately identify foreground running apps, the websites Safari
visits and the operations of Apple Home (including opening the
door, garage, light and viewing the camera, etc). For foreground
app identification, our approach achieves a high accuracy not
only in the closed-world scenario (100 known apps), as did in
the prior research [53], but also in an open-world setting (500
apps with only 100 fingerprinted), which has never been done
before, showing the prowess of the new attack. Our evaluation
demonstrates that Mischief is effective (high accuracy), efficient
(short execution time), and also robust (e.g., models trained on one
device can be used on other devices, as shown in Sec. 4).
Responsible disclosure. In December 2022, we reported the vul-
nerability to Apple. To aid in the investigation, we provided our
code, data, and video demonstrations of our attacks. As of the prepa-
ration of this manuscript, the Apple security team is still examining
the issue, and we remain in communication with them.
Whole-system leak control. Mitigating side channel leaks today
primarily focuses on individual channels (e.g., [48]). Even Apple’s
kernel patch [1, 2] meant to control the leaks from a set of chan-
nels fails to suppress the information exposure from other sets of
channels, which allows our attack to succeed. Leveraging our new
multi-channel analysis, we developed a novel privacy-protection
technique that for the first time, aims at reducing the overall in-
formation exposition across the entire system, while minimizing
the impacts on its functionalities. Our approach, called Wheels
(WHolE-systEm Leak Suppression), iteratively identifies an opti-
mal subset of channels across the system to assess its information
leak using Merit Score and then reduce the leak from the subset
by placing control of a small magnitude (adding a small amount
of noise, slowing down data release with a small delay, etc.) on a
selected channel with the most impact on the score. This iteration
ends when no channel subset with a score higher than a given
threshold can be found. The threshold set in our study is meant
to degrade the accuracy of an inference to the level of a random
guess. For this purpose, we utilized HIVE-COTE [27] to evaluate
the effect of an inference under a given Merit Score. HIVE-COTE
is known to be a heavyweight yet the most effective solution for
MTSC, which has been extensively used as a reference point and
an upper bound for measuring the performance of other MTSC
methods [15, 16, 21, 31, 40, 45].
Contributions. The contributions of the paper are outlined below:
• New findings and understandings. We made the first attempt to
systematically analyze the relations across multiple side channels
on a computing system and develop an effective way to infer sensi-
tive information from an optimal channel combination. Using our
technique, we demonstrate that indeed the state-of-the-art iOS is
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still vulnerable to an inference attack, exposing protected informa-
tion such as foreground apps, websites visited and operations of
Apple Home on IoT devices to unauthorized parties. Our findings
highlight the importance of side-channel defense on the whole
system, not just on individual channels.
• New techniques. In addition to the attack/analysis technique, we
further developed the first approach to suppressing information
leaks on a given target across all channels of a computing system.
The effectiveness of the technique was evaluated on iOS. These new
techniques are the first step toward more comprehensive control
of information leaks on a system, across all its side channels.

2 BACKGROUND
2.1 OS-Level Side Channel Attacks
Unlike the attack that exploits software vulnerabilities to gain direct
access to sensitive user data, a side channel attack aims to infer such
information by monitoring the observable side effects issued during
the execution of a computing system or its applications involving
the data. Such side effects may seem harmless, but actually reveal
certain artifacts or characteristics of the target information (secret
data, user activities, etc.). They come from the sources including
caches (cache side channels), sensors (sensor-based side channels),
and the APIs open to third-party apps for querying the status of
the device, the OS or other apps (OS-level side channels). On a
mobile OS like iOS and Android, knowledge about user activities is
sensitive and should not be disclosed to unauthorized parties, since
the information could be abused for the purposes such as phishing,
as reported by the prior studies (e.g., [17]).

The focus of our research is OS-level cross-channel leaks. Prior
research has demonstrated that OSes often fail to properly control
information exposure from side channels. A prominent example
is procfs, a pseudo file system used on UNIX-like OSes (including
Android) to export kernel statistics for each process (e.g., memory
usage, CPU usage, network usage) to user space. Individual side
channels under procfs have long been studied [10, 17, 25, 26, 50, 55].
It does not exist on iOS though, which only releases global statistics
to allow third-party apps to monitor resource consumption of the
whole system (e.g., CPU, memory, storage usage). These statistics
are aggregated data and considered to be “safe”, since detailed per
process data is hard to recover from each of them. Collectively, how-
ever, these public statistics are found to be still quite informative:
particularly, user activities are shown to be identifiable from mem-
ory, network and file system information, three channels accessible
without any permission [53]. In response to the findings, Apple
patched the iOS kernel to reduce the frequency of releasing memory
usage and cut the precision of network-related statisics [1, 2].

2.2 Multivariate Time Series Classification
Concept. Time series classification (TSC) is a machine learning task
in which the input data consists of a series of real-valued, ordered
features. For example, stock prices, sales, weather, and web traffic
etc. are typical time series data. This problem is challenging since
ordered data are known to be hard to analyze and classify. In the
past, much attention has been paid to univariate TSC, in which the
input is a single time series with corresponding class labels. More

useful in the real world, however, is multivariate TSC (MTSC), in
which a single input case has multiple dimensions or features, each
represented as a time series. Examples of MTSC problems include
human activity recognition (predicting user activities from the data
collected by wearable devices with a variety of sensors, such as
accelerometers, gyroscopes, GPS, electromyography sensors and
pressure sensors), diagnosis based on medical data such as ECG
or EEG, and monitoring systems. In the context of side channel
attacks, MTSC is relevant because an attackermay leveragemultiple
side channels simultaneously for inferring sensitive information,
and each channel can be viewed as a univariate time series (UTS).
Following we formally define the multivariate time series (MTS),
UTS and the MTSC tasks.

Definition 2.1. A Multivariate Time Series is a sequence of 𝑇
ordered elements 𝑋𝑖 with𝑀 dimensions, where each element is a
vector of real numbers with𝑀 components, i.e. 𝑋𝑖 ∈ R𝑀 . An MTS
is represented as 𝑋 = [𝑋1, 𝑋2, . . . , 𝑋𝑇 ].

Definition 2.2. A Univariate time series 𝑋 of length 𝑇 is a type
of MTS that has only one dimension, i.e.𝑀 = 1.

Definition 2.3. The Multivariate Time Series Classification task
consists of learning a classifier on a dataset 𝐷 = (𝑋 1, 𝑌 1), (𝑋 2, 𝑌 2),
. . . , (𝑋𝑁 , 𝑌𝑁 ), a collection of pairs (𝑋 𝑖 , 𝑌 𝑖 ), where each pair con-
sists of an input 𝑋 𝑖 and a corresponding class label 𝑌 𝑖 , in order to
map from the space of possible inputs𝑋 to a probability distribution
over the classes 𝑌 .

There are two types of MTSC, transformation-based and deep-
learning based classification [36], which we elaborate below.
Transformation based methods. Transformation based methods
extract features from a training set with transformations and lever-
age classifiers such as Support Vector Machines (SVMs) or Random
Forests to classify the inputs using these features. Such transforma-
tions can be dictionary-based or shapelet-based. Dictionary-based
transformations for time series classification discriminate time se-
ries based on the frequency of repetition of certain sub-sequences.
The shapelet transformations classify a time series by identify-
ing and extracting short, repeated sub-sequences (called shapelets)
from the series. None of these approaches, however, can achieve
state-of-the-art accuracy [36].

Since none of these time series transformation methods (such
as shapelets or SFA) can consistently outperform the others, an
ensemble of the classifiers operating on different time series rep-
resentations (called COTE [7]) is considered to be more effective.
Particularly, Lines et al. [27] extend COTE with a hierarchical vot-
ing scheme, called HIVE-COTE (Hierarchical Vote Collective of
Transformation-Based Ensembles), which further improves the per-
formance of the ensemble. HIVE-COTE is currently the most ac-
curate method when evaluated on the UCR archive [13], but its
high training complexity (order 𝑂 (𝑁 2 ·𝑇 4)) makes it impractical
for many real-world applications. By comparison, deep learning
models can be trained faster due to their use of GPU parallel com-
putation. So, HIVE-COTE often serves as a reference point or upper
bound for evaluating the performance of other time series classifi-
cation methods [15, 16, 21, 31, 40, 45], as it represents the current
best-known accuracy achievable on given datasets.
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It is important to note that the prior work on iOS side-channel
analysis [53] based only on a single transformation, which could be
more efficient than HIVE-COTE but much less effective, in terms
of classification accuracy.
Deep learning based methods. Deep learning techniques, which
have been successful in tasks such as image recognition and natural
language processing, have recently been applied to MTSC. In par-
ticular, Convolutional Neural Networks (CNNs) have demonstrated
good performance in MTSC. A convolutional layer in a CNN con-
sists of sliding one-dimensional filters over the input time series,
allowing the network to extract time-invariant, non-linear features
useful for classification. By cascading multiple layers, the network
is able to further extract hierarchical features that should in theory
improve prediction accuracy.

Currently, the state-of-the-art deep learning approach for MTSC
is InceptionTime [21]. InceptionTime is an ensemble of convolu-
tional neural networks that utilize a series of inception modules
with residual connections and global average pooling, followed
by a fully connected layer. In terms of accuracy, InceptionTime
comes close to HIVE-COTE, but it is significantly more efficient,
with a training time that is two orders of magnitude faster than
HIVE-COTE.

2.3 iOS Cross-App Isolation
System resources access. On iOS, access to protected system
resources and data is restricted by default to protect the user’s
privacy and prevent unauthorized access. All apps from the App
Store are sandboxed, which means that they are isolated from the
system files, resources, and data of other apps. Developers must
request access to these resources and data on a per-case basis, and
the user can grant or deny such an access request.

For example, if an app developer wants to access the smart home
devices, she needs to include the NSHomeKitUsageDescription
key in the app’s property list file. When the app is invoked first
time, a dialog box appears, asking for the permission to access
the smart home devices. If the user grants the permission, the app
will be able to access the devices. The user can also revoke this
permission at any time through the Settings menu. This mechanism
allows the user to control which app has access to their data and
resources, ensuring that their privacy is respected.
Cross-app communication. There are several ways that iOS apps
communicate with each other. One method is through the URL
scheme: an app can register a unique URL and by activating it,
other apps can pass data to the app. The iOS pasteboard is another
channel for cross-app data sharing, which acts as a system-wide
clipboard for storing and retrieving data. Since iOS 16, each time an
app tries to access the pasteboard, a prompt is displayed to the user
asking for permission to do so. This ensures that apps cannot access
the pasteboard without the user’s consent. For sharing data within
the same developer team, apps can utilize App Groups to exchange
data such as user defaults, files, and database information. Given
that there is no way for sharing data between different developers’
apps without the user’s consent, monitor activities across these
apps cannot be done through these public communication channels.
App vetting. Before an app is available to iOS users, it must go
through a review process by Apple to ensure that it meets the

App Store Review Guidelines [3]. These guidelines describe the
technical, performance, and security requirements that all apps
need to follow in order to be accepted to the App Store. As part
of this review process, Apple verifies whether apps are using APIs
and frameworks for their intended purposes [3]. If an app is found
to violate these guidelines, it will not be published.

2.4 Threat Model
In our research, we consider the adversary who aims to infer the
events of interest on a target iOS system, such as the websites
visited, the operations of IoT devices, and the apps running in the
foreground by analyzing the API returns from the iOS kernel.

For this purpose, the adversary is assumed to run an unprivileged
attack app on the target system. The app masquerades as a program
with a legitimate reason to operate in the background, such as an
audio player. Except that, the app does not need any permission
that requires explicit user consent.

To mitigate the threat posed by the adversary, the defender in-
tends to control information leaks from all possible side channels
related to the target event. At the defender’s disposal are a set of
standard techniques that can be applied at the OS level to suppress
information exposure from the API return, such as adding noise to
the return, reducing its accuracy or releasing the data at a lower
frequency. The protection is considered to be successful if the at-
tempt to infer information from any subset of the channels on the
system is no more effective than a random guess.

As mentioned earlier, our research focuses on OS-level side chan-
nels, not the information leaks from micro-architecture, power con-
sumption, electronic magnetic emission, and others, though the
same analysis could also be applied to evaluate the collective leaks
cross these channels.

3 THE MISCHIEF ATTACK
3.1 Overview
As mentioned earlier, Mischief is designed to utilize an optimal sub-
set of side channels, which collectively expose most information
about a target activity on iOS (such as an app running in the fore-
ground), to achieve the most effective identification of the activity.
Most challenging here is how to find such an optimal subset. For
this purpose, our approach first systematically detects potential OS-
level side channels across the system, and then searches for their
optimal combination using a correlation analysis. Inference on the
combination discovered is formulated as an MTSC problem, which
Mischief addresses by building a machine learning (ML) model
using the state-of-the-art solution, to accurately predict the occur-
rence of the event of interest from a time series of observations
from all the side channels in the combination. In order to enable
the attack in an open world scenario, which has never been done
before, Mischief performs data augmentation to better generalize
the model. Following we describe these two phases at a high level.
Optimal side-channel combination discovery. Mischief uses
a simple approach to find potential iOS side channels from the
Apple developer documentation: it goes through the specifications
of all iOS APIs to identify those that return statistics (counters)
related to a set of keywords; these keywords come from automatic
extension of a small set of seeds by a co-occurrence analysis. On
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these identified channels, Mischief searches for an optimal subset as
measured byMerit Score [24], a metric for correlation-based feature
selection. This search is formulated as an optimization problem,
whichMischief solves using simulated annealing to approximate the
global optimum. This allows Mischief to discover a set of channels
that could enable the most powerful inference attack.
Learning for target activity inference. From the channels dis-
covered, Mischief collects a dataset 𝐷 = (𝑋 1, 𝑌 1), (𝑋 2, 𝑌 2), . . . ,
(𝑋𝑁 , 𝑌𝑁 ), where 𝑌 𝑖 is a class label of an activity of interest (e.g.,
a specific app running in the foreground) and 𝑋 𝑖 represents an
𝑀-dimensional multivariate time series, with each dimension being
a univariate time series of a length 𝑇 that describes 𝑇 consecu-
tive observations from a selected channel (e.g., the CPU usages
observed in𝑇 consecutive time frames). Then our approach utilizes
a state-of-the-art deep learning technique to learn an MTSC model
for predicting the class label for the activity of interest based on
the side channel information captured by the input data 𝑋 , also an
MTS describing 𝑇 observations from all channels in the optimal
combination. The model is expected to effectively distinguish be-
tween the inputs 𝑋 𝑖 characterizing a specific class (e.g., a specific
app, a website visited, etc.) and other classes (e.g., other apps, other
sites). For this purpose, the model should be well generalized, capa-
ble of identifying the class not only from others of interest to the
adversary but also from those not being targeted. This requires a
lot of training data related to the target activity that may not be
practically obtained. To address this challenge, Mischief employs
an online data augmentation method that leverages a diverse set of
pre-collected background noise samples to improve themodel’s gen-
erality. As a result, Mischief becomes capable of recognizing user
activity even in an open world scenario, accurately distinguishing
between the inputs of interest and those not.

Fig. 1 illustrates the design of Mischief. The rest of the section
elaborates on individual attack phases.

Figure 1: Overview ofMischief. Mischief consists of twomain
stages: (1) identification and selection of informative side
channels, and (2) learning from these channels to infer user
activities.

3.2 Optimal Channel Combination Discovery
The first phase of Mischief aims to find the most effective channel
combination for inferring the target activity. This phase can be
conducted offline, and consists of two stages: systematic channel
identification and optimal channel set discovery.
Channel identification. To build an efficient classifier, the first
step is to collect a set of iOS APIs that expose information about

the target activity. Typically, such information is related to the
computing resource (e.g., CPU, memory, disk and network etc.)
consumed by the operations related to each class of the each activity.
So Mischief takes as its input a list of resource-related keywords,
including CPU, memory, storage, and network, and further expand
it by adding acronyms and synonyms using Word Net [33]. The
expanded resource list is then used to pre-screen APIs.

From the resource-related APIs, we find those returning statistics
about the resources related to the target activity. To this end, our
approach utilizes an initial keyword vector with a set of keywords
such as num, len, count, and time, which can be configured by
the user of our technique. This initial vector is then automatically
expanded by seeking other keywords highly related to the vector,
based upon the number of their co-occurrences in the API speci-
fications with the keywords already in the vector. The expanded
vector then serves the purpose of extracting useful statistics from
the APIs selected through the pre-screening, by fuzzy-matching
the content of API specifications. The statistics discovered in this
way are considered to be potential side channels.

In our research, we performed this analysis on the iOS 16 SDK,
which contains a large amount of information about all APIs. The
resource list and the keyword vector we used are shown in Table 1.
Note that each selected API may contain multiple potential side
channels, since an APImay return a data structure carryingmultiple
statistics. Each statistic whose value changes with the occurrence
of the target activity is considered to be a separate channel.

Table 1: Generated Keywords.

List Keywords

Resources
container, cpu, device, disk, host, machine, mem,

net, network, node, pod, procedure, process, service,
storage, thread, virtual memory, vm, volume

Keyword
Vector

active, allocated, avail, bit, byte, cnt, count, current,
elapsed, free, hit, host, idle, info, len, load, num, offset,

packets, receive, request, reserved, resident, sec,
send, sent, shared, size, state, statistics, suspend, swap,

terminated, tick, time, use, valid, wired

Using identified potential channels, Mischief then constructs the
dataset𝐷 = (𝑋 1, 𝑌 1), (𝑋 2, 𝑌 2), . . . , (𝑋𝑁 , 𝑌𝑁 ). Such data is gathered
by continually querying the selected APIs and labeling their returns
with the corresponding activity classes. Based upon this dataset, an
optimal channel set is selected for side-channel inference.
Optimal channel set discovery. Given the potential side channels
related to a target activity, one may intend to use all of them, in the
hope of maximizing the amount of information for inferring the
activity. This simple approach, however, does not work well, since
bundling random channels together may not improve information
gain, and instead may even undermine the inference effectiveness,
due to the noise introduced by these channels. Further learning
from a large number of channels needs more training data and
takes more time, adding to the burden of classifier construction. So
it is important to carefully select a subset of channels that provide
the most valuable information through a channel selection process.

Serving this purpose is correlation-based feature selection [24], a
method for evaluating the utility of a subset of channels for inferring
the target activity, based onMerit Score. Intuitively, a set of channels
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Figure 2: An example of the time series data collected by the
en0_opackets channel while three iOS apps were launched.

become most informative when they are strongly correlated with
the target activity while less so from each other (so they provide
complementary information) [24]. Such a relation characterizing a
channel set is measured by Merit Score, as defined below:

𝑀𝑒𝑟𝑖𝑡 =
𝑘𝐶𝑜𝑟𝑟𝑐 𝑓√︃

𝑘 + 𝑘 (𝑘 − 1)𝐶𝑜𝑟𝑟 𝑓 𝑓
, (1)

where 𝐶𝑜𝑟𝑟𝑐 𝑓 is the average correlation between the features of
the information, in terms of time series, observed from the side
channels in the subset, and the class label, while 𝐶𝑜𝑟𝑟 𝑓 𝑓 is the
average correlation between the selected features; 𝑘 denotes the
number of features in the subset. Note that all the correlations are
calculated on the collected dataset 𝐷 , which is a set of labeled MTS.

For example, Fig. 2 shows the time series data observed from a
channel (statistic) en0_opackets, the number of packets delivered
through the WiFi interface that was gathered by a background
app when three iOS apps (Amazon, Spotify, and YouTube) were
launched. Each data point in the figure describes the change of the
statistic since the last query. To gather the data, the API was called
500 times per second, so the unit of the x-axis is 0.002 seconds. As
we can see from the figure, these apps are distinguishable from the
time series of the network statistic (though the UTS alone may not
work well against a large number of apps), demonstrating the value
of using time series to represent information leaks.

To capture the correlation across different time series, we need to
extract their features, an important step in time-series analysis [36].
As mentioned earlier, feature extraction using transformations such
as shapelets or SFA is computationally expensive, particularly when
working on a large dataset. An emerging, more efficient solution is
to train a DNN classifier on a time series and use the representation
it generates as the feature for the series [15, 16, 21, 45]. In our
research, we found that a simplified version of the approach, using
only the output layer of the classier, also yields good results (Sec. 4).

Specifically, for a given channel 𝑖 , our approach first extract from
the labeled MTS dataset 𝐷 a labeled UTS dataset 𝐷𝑖 that contains
only the time series data of the 𝑖-th channel (i.e., the 𝑖th dimension
of all 𝑋 in the dataset). Then, we perform 𝐾-fold split to train 𝐾
classifiers for the 𝑖-th channel on dataset 𝐷𝑖 to predict the class
label for each UTS: that is, 𝐷𝑖 is randomly broken down into 𝐾
subsets, with each subset corresponding to a classifier; Classifier
𝜅 (1 ≤ 𝜅 ≤ 𝐾) is used to generate predictions on the 𝜅th subset

but trained on the remaining 𝐾 − 1 subsets. All predicted labels
produced by these 𝐾 classifiers for all univariate time series in 𝐷𝑖

form a feature vector for the channel 𝑖 .
Here is the idea behind our approach: if the time series of the

channel 𝑖 enables classifiers to effectively predict their class labels
for the target activity, then this channel must be highly related to
the activity, so it contributes to a high average correlation with the
target𝐶𝑜𝑟𝑟𝑐 𝑓 . In the meantime, if another channel 𝑗 is characterized
by the similar prediction results as 𝑖 , adding 𝑗 to the combination
does not help improve the utility of the combination since it does
not provide much new information.

As an example, consider a dataset 𝐷 with 1000 MTS data points
from two channels, CPU and memory usages. Each MTS in the
dataset, 𝑋 𝑖 , is a sequence of 100 elements – the samples collected
from the two channels at 100 different time points. So each MTS
is a 2 × 100 matrix. To build the classifiers for each channel, the
dataset𝐷 is split into two separate datasets,𝐷𝑐𝑝𝑢 and𝐷𝑚𝑒𝑚 , where
𝐷𝑐𝑝𝑢 contains 1000 CPU usages, each in the form of a 1 × 100
univariate time series, and 𝐷𝑚𝑒𝑚 involves 1000 memory-usage
UTSes. Each UTS in the new datasets retains the activity label of
its corresponding MTS in 𝐷 , so the CPU usage time series can be
aligned with the memory usage series if they were all observed
when the same activity event happens, such as running the YouTube
app in the foreground, visiting Chase bank’s website, etc. Each of
these two datasets are then broken down into 10 subsets to train
10 different classifiers. The classifiers for the CPU usages then
produce the labels for each UTS in 𝐷𝑐𝑝𝑢 , and so does the classifiers
for the memory usages. These labels form a feature vector for
the CPU usage and another vector for the memory usage. Their
joint contribution to information inference is then estimated by
calculating their Merit Score based upon their correlations.

Our current design adopts Mutual Information (MI) for calcu-
lating the correlation of both 𝐶𝑜𝑟𝑟𝑐 𝑓 between a channel and the
class label of the target activity and 𝐶𝑜𝑟𝑟 𝑓 𝑓 between two different
channels. MI is an information theoretic concept measuring the
dependency between two random variables: i.e., the amount of in-
formation about one variable can be derived by observing the other.
Given two continuous random variables 𝑋 and 𝑌 , the entropy of 𝑋
is defined as:

𝐻 (𝑋 ) = −
∫
𝑥

𝑝 (𝑥) log 𝑝 (𝑥) d𝑥 . (2)

The joint entropy of 𝑋 and 𝑌 becomes:

𝐻 (𝑋,𝑌 ) = −
∫
𝑥,𝑦

𝑝 (𝑥,𝑦) log𝑝 (𝑥,𝑦) d𝑥 d𝑦. (3)

Then, the MI between 𝑋 and 𝑌 is calculated as:

𝑀𝐼 (𝑋,𝑌 ) = 𝐻 (𝑋 ) + 𝐻 (𝑌 ) − 𝐻 (𝑋,𝑌 ). (4)
In our research, we used the Adjusted Mutual Information

(AMI) [34] score to calculate the correlations. AMI is a variant
of mutual information adjusted to account for the possibility of
observing the accidental agreement of the two random variables,
given the distribution of the data. It is generally more reliable
than MI in evaluating the strength of the association between
two variables, especially when the sample size is small or the
distribution of the data is not well-known. It is defined as:
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𝐴𝑀𝐼 (𝑋,𝑌 ) = 𝑀𝐼 (𝑋,𝑌 ) − 𝐸 [𝑀𝐼 (𝑋,𝑌 )]
𝑚𝑒𝑎𝑛(𝐻 (𝑋 ), 𝐻 (𝑌 )) − 𝐸 [𝑀𝐼 (𝑋,𝑌 )] . (5)

Using Merit Score as a metric, Mischief searches for the optimal
combination of potential side channels. Clearly, a brute-force search
is exponential and therefore not an option. So we use probabilis-
tic search to approximate the optimal solution. Specifically, our
approach is an 𝜀-greedy search, which at any moment, selects a
channel and adds it to a subset. The selection is done probabilisti-
cally, with a probability 𝜀 to choose the channel outside the subset
that maximizes the Merit Score with the channels already inside the
subset compared with other outside channels, and with a probabil-
ity 1 − 𝜀 to choose a random outside channel. This strategy is used
in reinforcement learning and we also apply simulated annealing
to 𝜀 to ensure the convergence of the process and further repeat
the whole search process for multiple times to avoid local optima.

Algorithm 1 presents the whole channel selection procedure
where Line 1 – 6 build a correlation profile using the classifiers
trained on the individual channels and the rest are for the 𝜀-greedy
search. The key steps are Line 8 (restarting the whole search pro-
cedure for multiple times), Line 14 (randomly picking a channel
with probability 𝜀 and greedily picking the best channel with a
probability 1 − 𝜀) and Line 25 (performing simulated annealing).

3.3 Learning for User Activity Inference
On the selected channels, Mischief builds a model to infer the target
activity by modeling it as a Multivariate Time Series Classification
problem (as defined in definition 2.3), where the model inputs 𝑋 𝑖

are the time series data collected by periodically calling the APIs
of these selected channels, and the output 𝑌 𝑖 is the class label of
the target activity. Our classification framework consists of three
major components: data pre-processing, data augmentation, and
classifier construction, which are elaborated below.
Data pre-processing. To prepare the training data for our MTSC
model, our approach first collects samples for each class of the
target activity (e.g., a specific app running in the foreground). As
mentioned earlier, each sample is a time series for a specific channel,
such as CPU usage, memory usage, etc., gathered in the presence of
an event (a specific class of the activity). All such samples form the
dataset 𝐷 = (𝑋 1, 𝑌 1), (𝑋 2, 𝑌 2), . . . , (𝑋𝑁 , 𝑌𝑁 ), where𝑋 𝑖 is the MTS
for all selected channels and 𝑌 𝑖 is the class label. To highlight the
useful information from the collected time series data, we calculate
the difference between consecutive data points for each time series
𝑋𝑘 , that is, 𝑑𝑖 𝑓 𝑓 𝑖 [𝑘] = 𝑋 𝑖 [𝑘] − 𝑋 𝑖 [𝑘 − 1]. This transformation
allows us to focus on the changes in a time series rather than its
data points’ absolute values.
Data augmentation. A model that can accurately recognize the
target events in an open-world scenario should generalize well on
its training data, capable of effectively classifying the data outside
its training set. For this purpose, a large amount of highly diverse
data, including awide range of examples and variations, is needed to
help the model capture the robust and generalized representations
of the input space. Such training data, however, can be expensive
to generate in practice, particularly for a large number of events
related to the user operations (e.g., many apps to be identified). So

Algorithm 1: Channel Selection for Multi-channel Side
Channel Attacks
Input :Multiple side-channel traces 𝑋 of 𝑛 channels, labels 𝑌 ,

Restart times𝑇𝑚𝑎𝑥 , Epsilon 𝜀 , Annealing rate Δ𝜀 .
Output :The optimal set of channels �̂�𝑐 , the best Merit Score

ˆ𝑀𝑒𝑟𝑖𝑡 .
1 for 0 < 𝑖 ≤ 𝑛 do
2 Train classifier 𝑓𝑖 on {𝑋𝑖 , 𝑌 }
3 𝑝𝑟𝑒𝑑𝑖 ← 𝑓𝑖 (𝑋𝑖 )
4 𝐶𝑜𝑟𝑟 𝑓 𝑓 ← 𝐴𝑀𝐼 (𝑝𝑟𝑒𝑑𝑖 , 𝑝𝑟𝑒𝑑𝑖 )
5 𝐶𝑜𝑟𝑟𝑐𝑓 ← 𝐴𝑀𝐼 (𝑌, 𝑝𝑟𝑒𝑑𝑖 )
6 end
7 �̂�𝑐 = {}, 𝑖𝑡𝑒𝑟 = 0, ˆ𝑀𝑒𝑟𝑖𝑡 = 0
8 while 𝑖𝑡𝑒𝑟 < 𝑇𝑚𝑎𝑥 do
9 𝑘 ← 1, Δ𝑀𝑒𝑟𝑖𝑡 ← 1

10 while Δ𝑀𝑒𝑟𝑖𝑡 > 0 do
11 Identify 𝑘 sized channel subsets {𝑐 } which includes the

selected 𝑘 − 1 sized channel subset.
12 Calculate Merit Score {𝑀𝑒𝑟𝑖𝑡 } using Equation 1 for each 𝑘

sized subsets.
13 Sample a 𝑑𝑖𝑐𝑒 from 0 to 1.
14 if dice < 𝜀 then
15 𝑚𝑐_𝑘 , 𝑀𝑒𝑟𝑖𝑡𝑘 ← random sample a channel to form a

𝑘 sized subset
16 else
17 𝑚𝑐_𝑘 , 𝑀𝑒𝑟𝑖𝑡𝑘 ← argmax({𝑀𝑒𝑟𝑖𝑡 })
18 end
19 Δ𝑀𝑒𝑟𝑖𝑡 ← 𝑀𝑒𝑟𝑖𝑡𝑘 −𝑀𝑒𝑟𝑖𝑡𝑘−1
20 𝑘 ← 𝑘 + 1
21 end
22 if 𝑀𝑒𝑟𝑖𝑡𝑘−2 > ˆ𝑀𝑒𝑟𝑖𝑡 then
23 �̂�𝑐 , ˆ𝑀𝑒𝑟𝑖𝑡 ←𝑚𝑐_𝑘−2, 𝑀𝑒𝑟𝑖𝑡𝑘−2
24 end
25 𝑖𝑡𝑒𝑟+ = 1, 𝜀− = Δ𝜀

26 end
27 return �̂�𝑐 , ˆ𝑀𝑒𝑟𝑖𝑡

we applied data augmentation techniques [41] to artificially increase
the size and diversity of the training dataset in our research.

However, data augmentation for time series data is often chal-
lenging, since a time series describes a sequence of ordered and
interdependent observations. So simply adding random noise to
the data, would not capture such dependencies and could result in
unrealistic or even misleading data [47]. To address this challenge,
we designed a unique data augmentation method using “natural
noise”. Specifically, recall that under our threat model, the adver-
sary relies on global statistics about system resources shared among
all apps to infer sensitive user information. So any sample made
on such a statistic is affected by both the activity of interest in
the foreground and others that take place in the background. To
build a model that is able to withstand the noise incurred by these
background activities, our approach collects samples of “natural
noise” by querying each statistic when running a variety of apps
in the presence of a foreground app whose resource consumption
is stable, not causing any change to the time series collected: in
our research, we utilized the calculator app, which in the absence
of interactions, does not incur additional CPU and memory use
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and any network traffic. Such noise samples are then applied to the
training set for an online data augmentation. Online augmentation
applies transformation to the input data during the training process,
rather than to the training set before the training. This approach
allows the model to be trained on more diverse data points, thereby
better generalizing the model.
Classifier. As mentioned earlier, we formulate the multi-channel-
based side channel attack as a Multivariate Time Series Classifi-
cation problem, to which InceptionTime [21] is a state-of-the-art
solution (Sec. 2.2). InceptionTime achieves a high classification
accuracy, coming even close to the much more heavyweight HIVE-
COTE, using a combination of Inception modules and ResNet, and
by combining the predictions of multiple models of this architecture
trained with different random initial weights. The InceptionTime
architecture include two blocks, each with three Inception mod-
ules [44], together with residual connections and global average
pooling and softmax layers. This architecture enhances the stability
and performance of a model.

Another MTSC solution is Rocket [15], which is built upon a
large number of random convolution kernels together with a lin-
ear classifier (such as ridge regression or logistic regression). The
kernels are applied to individual instances, and from the result-
ing feature maps, the maximum value and a new feature – the
Proportion of Positive Values (PPV), are returned. Rocket is also
a state-of-the-art technique, which performs competitively with
InceptionTime. We chose to use InceptionTime over Rocket be-
cause InceptionTime is more suitable for online data augmentation.
Specifically, training of deep learningmodels such as InceptionTime
requires a large number of iterations, so under online augmentation,
the model is exposed to a large amount of diverse training inputs,
as each iteration comes with an input transformation: i.e., adding
different natural noise samples to the input time series. By compar-
ison, transformation-based methods like Rocket do not go through
iteration rounds, so they can only use offline data augmentation,
which renders these models less generalized on a small amount of
training data and therefore are less ready to work in an open-world
scenario. We compared these approaches in our research (Sec. 4).

4 EVALUATION AND FINDINGS
4.1 Experimental Setup
Hardware and software settings. All our experiments were con-
ducted on iPhone XR and iPhone 11 that were not jailbroken and
were running iOS 14.2 and iOS 16.2 1 respectively. Our monitoring
app was set to call APIs at a frequency of 500 times per second,
while each activity class (e.g., running a specific app) was moni-
tored for a duration of 10 seconds, which produced a time series
with 5,000 data points. Note that the data were always collected
immediately after the launching time of each app and therefore
only the first 5,000 data points after app launching are monitored.

For data augmentation, we collected the natural noise samples
by running the iOS-provided Calculator app in the foreground and
the top 100 most reviewed free apps in the background. We made
two samples across all side channels for each background app. This

1iOS 16.2 was released on December 13, 2022, which is the most current version as of
the date this paper was written.

results in 200 noise samples for transformations in online data
augmentation, in which the noise was added to the input to the
model under training.
Mischief configuration. For the channel selection stage (Algo-
rithm 1), we set the parameters as follows: 𝜀 = 0.2, Δ𝜀 = 0.02,
𝑇𝑚𝑎𝑥 = 10 in all our experiments. In the training stage, we con-
structed an InceptionTime model with two Inception blocks, set-
ting the default values for the model as bottleneck_size=32,
filter_length={5,11,23}, filter_num={32}. The model was
trained on the pre-collected dataset for 300 epochs with a batch size
16, the initial learning rate of its Adam optimizer being 1×10−3 and
weight decay being 1 × 10−5. For Rocket, we used 10,000 random
convolutional kernels to transform data, and ridge regression to
build the classifier.
App store vetting. In our research, we submitted a monitoring
app capable of conducting all aforementioned side-channel attacks
to the App Store for vetting. The app is disguised as an Audio
Player, which requires the Audio Background Mode for running
in the background. Our app successfully passed the vetting, which
indicates that the program capable of launching the Mischief attack
is not considered to be malicious by Apple. It is worth noting that
we immediately withdrew our application from the App Store right
after it was approved. According to our dashboard, no downloads
occurred and no users were affected.

4.2 Effectiveness and Discoveries
Our attack focuses on two types of activities: apps running in the
foreground and in-app operations. Note that these activities are
related: finding in-app operations is contingent upon recognition of
the foreground app. However, for simplicity of analysis, these two
activities were studied and related attack techniques were evaluated
separately in our research. In this paper, for in-app operations, we
focus on two specific activities: visiting websites and communicat-
ing with IoT devices.
Foreground app inference. To determine the apps running in the
foreground, our implementation of Mischief focuses on the top 100
most reviewed free apps from the App Store, though any iOS apps,
including those sensitive ones (LGBTQ+ dating app, porn app, etc.),
can be targeted using our technique. Also note that the adversary
can first identify the apps with sensitive functionalities, such as
healthcare, payment, web-surfing, etc., and then infer when related
operations have been executed, for example, visiting a website for
a specific disease. We utilized those popular apps in our research
since they involve a wide range of functionalities and can therefore
serve as a benchmark to evaluate the effectiveness of our attack
technique. Data was collected for each targeted foreground app,
with each app being launched 50 times while the monitoring app
ran in the background. The collected time series data was then
labeled with the app running in the foreground. The final dataset
contains 5,000 samples. The data was split into training and test sets
with a ratio of 8:2, i.e., the dataset includes 4,000 training samples
and 1,000 test samples. Table 2 demonstrates that our attack can
achieve a 94.1% classification accuracy on the test set, indicating
their ability to accurately distinguish between various foreground
apps. This poses a significant security risk.
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Table 2: Optimal channel set for different events.

Events Channels Acc. (%)

Foreground Apps en0_ibytes, en0_obytes, en0_ipackets, en0_opackets,
user_time, wire_count, cow_faults 94.1

Websites
en0_ibytes, en0_obytes, en0_ipackets, en0_opackets,

user_time, wire_count, free_count,
internal_page_count, inactive_count

93.7

IoT activities en0_ibytes, en0_obytes, en0_ipackets, en0_opackets,
user_time, wire_count, faults, internal_page_count 91.0

Website identification. To evaluate the inference of the websites
visited, we selected the top 100 websites from Moz [6] and visited
them using Safari, including Google, Wikipedia, PayPal, etc. Data
was collected for each targeted website, with each website being vis-
ited 50 times while the monitoring app ran in the background. The
collected time series data was then labeled with the corresponding
website. The dataset includes a total of 5,000 samples, with 4,000
allocated for training and 1,000 for testing. The result (Table 2)
shows that our attack achieves an accuracy of 93.7% in classifying
websites, indicating a significant security concern. For example,
visiting PayPal could indicate a payment transaction, allowing an
adversary to identify the user by matching the payment time with
public records.
IoT operation detection. To analyze the disclosure of the op-
erations on IoT devices, we used 10 popular devices that can be
controlled through Apple HomeKit. Specifically, we conducted ex-
periments on 6 IoT devices including a smart lock, a surveillance
camera, a LED light, a thermostat, a garage door opener, and a
smart doorbell connected to Apple Home, in an attempt to identify
10 different types of commands issued by Apple Home to these de-
vices, including opening the door, viewing the surveillance camera
image, checking the motion detector of the surveillance camera,
checking the light detector of the surveillance camera, turning on
the LED light, checking the thermostat, opening the garage door,
viewing the smart doorbell image, checking the motion detector
of the smart doorbell, and checking the light detector of the smart
doorbell. Data was collected for each command issued by Apple
Home, with each command being triggered 50 times while the mon-
itoring app ran in the background. The collected time series data
was then labeled with the corresponding command. The dataset
has a total of 500 samples, with 400 designated for training and 100
for testing. Our experiment result (Table 2) shows that our attack
achieves an accuracy of 91.0% in classifying different commands
issued by Apple Home. This is concerning as it allows the adversary
to infer highly sensitive information about the IoT user, such as
when her home door or garage door is open.
Selected channels. As shown in Table 2, the optimal set we
discovered includes the statistics for network, memory and CPU.
Specifically, statistics en0_ibytes, en0_obytes, en0_ipackets,
and en0_opackets are network side channels exposed through the
API getifaddrs(). en0_ibytes, and en0_ipackets keep track
of the number of bytes/packets received by the device over the
network, and en0_obytes and en0_opackets count the number
of bytes/packets transmitted by the device to the network. These
four channels are often used together to measure network traffic

and can be leveraged to identify patterns and anomalies in network
usage. These channels provide complementary information and
can therefore be used together for inferring target events.

Memory channels include cow_faults, internal_page_count,
inactive_count, faults, free_count, and wire_count. These
counters are returned by the API host_statistics64(). Such
channels provide different amount of information for different
events (that is, different classes of the target activity, such as specific
foreground apps to be identified), as measured by their correlations
with the events. This could be attributed to the characteristics of
these events and how they affect the usages of memory and re-
sources on the device. In particular, the cow_faults counter, which
records the number of copy-on-write faults, is shown to be most
effective in identifying foreground apps, since foreground apps
tend to have diverse behavior and therefore incur a broad variety
of memory operations, as reflected by the COW faults caused by
these operations.

Also the faults channel monitors the number of page faults
that have occurred, which turns out to be very useful for inferring
IoT events, as such events (e.g., camera streaming) tend to have
distinct patterns in memory and disk I/O accesses, leaving their
footprints in the number of page faults incurred. Although Safari
utilizes page caching to quickly retrieve recently visited pages,
thereby reducing the number of page faults, page caching causes
a large number of memory pages to be kept in physical memory,
affecting inactive_count and free_count. These two counters
keep track of the number of pages that have been recently used
but can be quickly reused if needed and the number of pages that
are not being used and do not contain any useful data, respectively.
They are more effective, compared with faults for identifying
visited websites.

The internal_page_count channel records the number of
pages that have been loaded into memory. A foreground app tends
to use a lot of memory pages, causing internal_page_count to be
easily saturated and thereby losing its identification power. When it
comes to IoT events and website visits, however, the count becomes
more volatile. This could result in the internal_page_count
channel to be included in the optimal set for inferring IoT and
website activities, not in the set for foreground app detection. The
wire_count channel tracks the number of pages that are "wired
down": that is, they cannot be moved or paged out of memory.
This statistic reveals the amount of memory used by system-level
processes. It can also serve as a useful indicator for the memory
used by GPU.

The CPU channel that is selected is user_time, specifically,
cpu_load_info.user_time.microseconds, which indicates the
CPU usage and is returned by the API thread_info(). As differ-
ent activities have different patterns of CPU usage, the channel
provides useful information for all events of interest.
Comparative study. In our research, we evaluated the effective-
ness of multi-channel inference on foreground app identification,
by comparing the approach with the inference performed on in-
dividual channels and on a sub-optimal channel set proposed by
the prior work [53]. The result shows that a single channel does
not provide enough information to accurately identify foreground
apps (Fig. 3), with the highest accuracy attained being 73.7%. This
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Figure 3: Foreground app recognition results using different
channel combinations.

value also corresponds to the performance of the global best single
channel.

When all 7 channels are used together, our MTSC achieves
an accuracy of 94.1% (shown as the "All" bar in Fig. 3). Also
Mischief significantly outperforms the inference attack on the
channel set selected by the prior study [53], which includes
en0_ibytes, en0_obytes from the API getifaddrs(), and
free_count, active_count, zero_fill_count, faults from the
API host_statistics64() (shown as the "Prev." bar in Fig. 3).
Note that only two of these channels (en0_ibytes, en0_obytes)
are also selected by our approach. As shown in the figure, such
a channel combination only achieves an accuracy of 78.2%,
marginally improving over the performance of the single channel
inference even in the close world, which indicates that the
protection Apple puts in place might work against this known
attack. However, the success of the Mischief attack gives strong
evidence that such protection is far from enough for controlling
side-channel leaks on iOS.

Further, we compared the effectiveness of different learning tech-
niques, including InceptionTime, Rocket and the transformation-
based approach proposed by the prior research [53], on the optimal
set of channels selected. The prior approach converts time series
data into Symbolic Aggregate approXimation (SAX) strings to cre-
ate a Bag-of-Patterns (BoP) representation, and then trains a SVM
classifier on the transformed data. This method is referred to as
"SAX+BOP+SVM". Table 3 presents the results of this comparative
study, showing that state-of-the-art MTSC methods significantly
outperform the prior approach, which again indicates that Apple’s
side-channel remedy based upon the prior attack is inadequate. Also,
while some literature suggests that Rocket beats InceptionTime in
some MTSC tasks, for foreground app identification, InceptionTime
is found to be more effective, achieving an accuracy (in the close
world) 5.4% above that of Rocket. The results also show that online
data augmentation (referenced as "InceptionTime + Aug." in Table 3)
further elevates the accuracy of InceptionTime by 2.6%.
Open-world results. Prior research all assumes a "closed-world"
scenario, in which the adversary has knowledge about all classes
of the target activity, such as all the apps deployed on the user’s
iPhone [53]. In our research, we studied Mischief under a more
realistic yet much more challenging open-world setting [37], where
the adversary only trains amodel on a subspace of the target activity,
while the rest of space is completely unknown: e.g., only a subset
of the apps on the victim’s phone analyzed by the adversary before.

To evaluate our attack in an open-world setting, we built an addi-
tional test set with the time-series traces collected from additional
500 apps. These apps are ranked between 100 and 600 in terms of
the number of reviews they have received. To gather their traces,
we made two samples from the APIs when each of these apps ran
in the foreground, using the same sample rate for analyzing the top
100 apps (500 times per second by default). In total, we gathered
1,000 samples with high diversity (generated by 500 different apps),
which are expected to be classified as "unknown" by the adversary,
as they are not of interest to the adversary. Specifically, the MTSC
deployed by Mischief is expected to assign a given time series to
101 classes: 100 foreground apps and one "unknown" class. It is im-
portant to note that the classifier has only been trained on samples
from the first 100 classes, not those in the unknown class.

The main idea here is that the classifier should have a higher
confidence level for the samples it has been trained on (closed-world
apps) compared with those it has never seen before (open-world
apps). Therefore, we use the classifier’s uncertainty to identify
input data that belongs to the "unknown" class. We calculate the
classifier’s uncertainty by measuring Shannon entropy [39] on the
classifier’s output.

Table 3: Performance of different methods.

Methods Closed-world
Acc. (%)

Open-world
Acc. (%)

Open-world
Precision (%)

Open-world
Recall (%) AUC

SAX+BOP+SVM 55.8 61.6 66.9 33.7 0.622
Rocket 86.1 51.0 17.3 5.9 0.557

InceptionTime 91.5 77.4 98.8 73.4 0.760
InceptionTime+Aug. 94.1 86.0 98.9 84.7 0.873

Using the confidence level estimation, we constructed an MTSC
and evaluated its effectiveness in distinguishing the samples from
the 101 classes. The results are presented in Table 3. As we can see
from the table, in the open world, the performance of both Rocket
and InceptionTime degrade significantly with SAX+BOP+SVM im-
proving marginally. In the meantime, the online augmentation is
demonstrated to boost the accuracy of InceptionTime to 86%. Note
that the test set samples may not be evenly distributed among
classes, and therefore the accuracy measured can be overestimated:
e.g., simply labeling all inputs as "unknown" would achieve an
accuracy of 50%. To address this issue, we further measured the
outcomes of the classifiers using precision and recall across all 101
classes, as shown in Table 3. As we can see from the table, Incep-
tionTime achieves a high precision on classification (nearly 99%)
and augmentation further improves its recall (from 73.4% to 84.7%).

We further group all the user activities of interest (closed-world
apps) into a meta-class called "known apps" and use the area under
curve (AUC) to measure the open-world attack (Table 3). The result
shows that InceptionTime+Aug achieves a highAUCof 0.873, which
provides further evidence that the open-world attack is practical.
Transferability. We studied the transferability of our attack across
different devices and iOS versions by building our model on an
iPhone XR running iOS 14.2 and evaluating it on an iPhone 11
running iOS 16.2. In the experiment, we randomly selected 50 apps
from the top 100 apps, launched each app 5 times on iPhone 11 with
a monitoring app running in the background, and collected 250
traces for testing. On these traces, Mischief achieves an accuracy
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of 88.0%. This mild performance degrade could be attributed to
updates of the apps after our collection of training data and before
gathering of the test data, in addition to the change of the device
and OS version. The transferability of the MTSC could be improved
by training it on the data from different devices.

Table 4: Impact of query frequency on attack accuracy.

Frequency Channels Accuracy

500Hz en0_ibytes, en0_obytes, en0_ipackets, en0_opackets,
user_time, wire_count, cow_faults 91.5

200Hz en0_ibytes, en0_obytes, en0_ipackets, en0_opackets,
user_time, wire_count, cow_faults 91.3

100Hz en0_ibytes, en0_obytes, en0_ipackets, en0_opackets,
user_time, wire_count, cow_faults 89.2

50Hz en0_ibytes, en0_obytes, en0_ipackets, en0_opackets,
wire_count, cow_faults 88.1

20Hz en0_ibytes, en0_obytes, en0_ipackets, en0_opackets,
wire_count, cow_faults, zero_fill_count 87.6

10Hz en0_ibytes, en0_ipackets, en0_opackets,
wire_count, cow_faults, zero_fill_count 83.0

5Hz en0_ibytes, en0_ipackets, en0_opackets,
wire_count, cow_faults, zero_fill_count 78.0

Effect of query frequency. In our attack’s default configuration,
the APIs are invoked at a rate of 500 Hz. To examine the impact of
query frequency on performance, we executed the attack under var-
ious frequency settings without data augmentation. As presented
in Table 4, the optimal channel set changes in response to different
query frequencies. When the frequency decreases to 50 Hz, the CPU
channel user_time is eliminated, indicating that the CPU channel
is most susceptible to the frequency change among the seven cho-
sen channels. With the frequency going down to 20 Hz, the memory
channel zero_fill_count is selected, indicating that compared
with other channels, this one is less affected by frequency variations.
As the frequency further declines to 10 Hz, the network channel
en0_obytes becomes ineffective and is removed from the optimal
set. Interestingly, during this process, with the query frequency
dropped from 500 Hz to 5 Hz, we observe that the attack just be-
comes slightly less effective (accuracy from 91.5% to 78.0%), which
demonstrates that the information leak across multiple channels
cannot be easily controlled by solely reducing the query frequency,
as implemented by Apple to address the prior attack [53].
Power Consumption. We assessed the power consumption of our
monitoring app while gathering side-channel data on an iPhone
XR running iOS 14.2. Throughout the experiment, the monitoring
app was executed in the foreground, calling APIs with different
frequencies. We then compared the device when running the app
against the situations when running each of four benchmark apps:
Spotify, YouTube, Amazon, and when the phone is idle (that is,
when the display is active and no app is running), in terms of
power consumption. Power consumption was measured utilizing
a multimeter tester. The outcomes are illustrated in Fig. 4. Our
findings indicate that the monitoring app’s power consumption is
consistently lower than that caused by each of the benchmark apps,
with a maximum of 1.456 W and a minimum of 1.276 W.
Execution Time. We measured the execution time of our attack
using the InceptionTime classifier, on a dataset of foreground apps
with 4,000 training samples and 1,000 testing samples. Training the

Figure 4: Power consumption of monitoring app under dif-
ferent query frequencies.

InceptionTime classifier for 300 epochs took 33 minutes and 9.9
seconds. Inferring the 1,000 testing samples took 1.89 seconds.
Use of the side-channel APIs in real-world apps. We per-
formed a static analysis on 5,857 iOS apps using Radare [4]. These
apps were downloaded between Nov. 17, 2022 and Jan. 6, 2023.
Among them, we found host_statistics64() in 5,091 of these
apps, getifaddrs() in 4,940 and thread_info() in 4,754. Partic-
ularly, 4,243 apps include all 3 APIs which are sufficient for afore-
mentioned attack. The findings show that these side-channel APIs
are quite pervasive in legitimate apps, making it hard to detect the
malicious app performing the Mischief attack.
Effect of dataset size. We further examined the effect of the size
of the attacker’s dataset. The experiments were conducted in the
closed-world scenario, where the goal was to identify the app run-
ning in the foreground, using a dataset of the top 100 popular apps
as described in Sec. 4. Our attack’s default configuration involves
collecting 5,000 samples for foreground apps, with 4,000 samples
designated as the training set and 1,000 samples used as the test set.
To investigate the effect of dataset size on performance, we kept
the test set size constant and gradually reduced the training set size
to observe changes in performance. The results of this analysis are
presented in Fig. 5.

Figure 5: Impact of the number of samples on attack accuracy.

As shown in Fig. 5, reducing the dataset size to 25 samples per
class (or 2,500 samples total) has minimal impact on test accuracy.
However, when the training set falls below 15 samples per class,
the accuracy drops significantly. It’s worth noting that previous
work [53] has only used 8 samples per class, which greatly underes-
timates the potential side channel leakage. Additionally, applying
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data augmentation techniques can significantly improve the ef-
ficiency of the attack. Despite using only 200 samples for data
augmentation, it greatly improves accuracy, particularly when the
dataset is small. This allows for a quick and lightweight attack,
making it more flexible for the attacker.

5 MITIGATION
Existing prevention-based mitigation techniques, such as those
adopted by Apple [1, 2] and the differential privacy (DP)-based
method [48], typically aim at mitigating the information leak from
a single side channel, and are not effective in controlling the in-
ference risk of the whole system, across multiple side channels.
To address the problem, we designed and implemented a mitiga-
tion technique calledWheels (WHolE-systEm Leak Suppression),
as a whole-system side-channel control solution. We describe the
technique in this section.

5.1 Wheels: Design and Implementation
The goal ofWheels is to determine the set of channels requiring side-
channel control and the appropriate level of protection to be applied,
so as to suppress the information exposure of a given system with
the minimum disruption to the functionalities of related APIs. For
this purpose, Wheels employs a Progressive Defense Search (PDS),
which iteratively identifies the optimal subset of channels in the
system in terms of information exposure, evaluates their joint side-
channel leaks using Merit Score, and then reduces the leaks by
applying control of a small magnitude on the channel contributing
most to the score. Such control can be achieved by reducing the data
releasing rate, lowering the granularity of the released statistics
or adding noise to the original data. Our current implementation
utilizes noise-adding for the protection, as elaborated below.

Figure 6: Flowchart of the 𝑘-th iteration of PDS (𝑛𝑐 = 1).

Progressive defense search. Specifically, given a set of potential
side channels on a computing system, PDS iteratively identifies
the optimal subset of the channels using Algorithm 1, then finds
the 𝑛𝑐 most salient channels from the subset (𝑛𝑐 = 1 by default),
and further adds noise to the channel(s) to lower down the Merit
Score of the subset, in an attempt to reduce the highest Merit Score
achievable across all the channels on the system, until the score
reaches a pre-defined threshold. Fig. 6 presents the flowchart of the

𝑘-th iteration of PDS. After the optimal channel subset is found,
our approach tests each channel in the subset to understand its
impact on the Merit Score, by first adding a small amount of noise
to it to calculate the new score of the subset and then removing the
noise from the channel and recording it if it is among the top 𝑛𝑐
most impactful channels discovered so far. After all channels in the
subset have been tested, noise (or other defense) has been applied
to the top 𝑛𝑐 channels. Then our approach re-determines the new
optimal channel subset and if the score of the subset is still above
the threshold, the search moves into the next iteration.

Our implementation adds spike noise [47] to a channel to sup-
press its side-channel leak, with both the direction (addition or sub-
traction) of the noise and its magnitude being randomly selected.
Specifically, for a time series 𝑋 = [𝑋1, 𝑋2, . . . , 𝑋𝑇 ], as specified in
Definition 2.2, the noise generated is added to each element 𝑋𝑖 :
�̃�𝑖 = 𝑋𝑖 +𝑟𝑖 , where 𝑟𝑖 is randomly sampled according to the Laplace
distribution: 𝑟𝑖 ∼ 𝐿𝑎𝑝 (𝑥 |𝜇 = 0, 𝜆), where 𝜆 is the scale parameter
and 𝜇 is the mean. The level of defense is then determined by the
scale parameter 𝜆. We incrementally add a fixed Δ𝜆 determined for
each channel, which is proportional to max(𝑋 ) −min(𝑋 ).

Algorithm 2: Progressive defense search.
Input :Multiple side-channel traces 𝑋 of 𝑛 channels, labels 𝑌 ,

target Merit Score𝑇𝑚 , defense step Δ𝜆.
Output :The optimal channel-wise defense �̂�𝜆 .

1 �̂�𝜆 = {}
2 �̂�𝑐 , ˆ𝑀𝑒𝑟𝑖𝑡 ← 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 (𝑋,𝑌 ) (Algorithm 1)
3 while ˆ𝑀𝑒𝑟𝑖𝑡 > 𝑇𝑚 do
4 Calculate Merit Score {𝑀𝑒𝑟𝑖𝑡 } after adding Δ𝑑 defense to each

channel of �̂�𝑐 .
5 Identify the salient channel 𝑘 ← 𝑎𝑟𝑔𝑚𝑖𝑛 ({𝑀𝑒𝑟𝑖𝑡 })
6 �̂�𝜆 [𝑘 ] ← �̂�𝜆 [𝑘 ] + Δ𝜆
7 �̂�𝑐 , ˆ𝑀𝑒𝑟𝑖𝑡 ← 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 (𝑋,𝑌 ) (Algorithm 1)
8 end
9 return �̂�𝜆

Algorithm 2 describes the whole progressive defense search
procedure. For each iteration, the noise Δ𝑑 is added to an iden-
tified channel at Line 6. The identification of the salient channel
is conducted upon the optimal subset of channels discovered by
Algorithm 1 at Line 7. A target Merit Score 𝑇𝑚 is the threshold
for determining when to terminate the algorithm, which indicates
the maximum information leaks tolerable across the whole system.
As mentioned earlier (Sec. 2.2), the threshold is estimated using
HIVE-COTE, an MTSC known to be heavyweight but provide the
most accurate solution to the MTS classification problem. Again, we
consider the side-channel leaks to be fully controlled when HIVE-
COTE on the optimal channel subset can only attain an accuracy
level of random guess. The Merit Score of the optimal subset is then
treated as 𝑇𝑚 . In our research, we used the dataset of foreground
apps (as discussed in Sec. 4) with 100 classes, thus the expected in-
ference accuracy after defense should be around 0.01%. This dataset
is representative and has a good transferability across different
devices (as described in Sec. 4).

It is important to note that in each iteration, we generate a new
attack profile based on the current defense, which is then utilized
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to generate the subsequent defense. Consequently, our defense
remains effective even if the attacker is fully aware of our strategy.

Furthermore, regarding OS-level channels, we implement the
defense by adding numerical noise to the API outputs. In contrast,
for other scenarios such as micro-architectural side channels, the
defense should be incorporated through alternative atomic opera-
tions, such as introducing fake keystrokes [38] or injecting random
cache accesses [9]. In these cases, Wheels can evaluate the suffi-
ciency of existing protection and determine the optimal quantity
of injected atomic operations, such as fake keystrokes or random
cache accesses.
Cross-API consistency. A risk of adding noise to API returns is
that the protection may cause inconsistency across the returns of
different APIs, which could affect the operations of the app relying
on such cross-API invariants. The problem has been studied in the
prior research [48], which applies differential privacy to procfs. In
our research, we made a preliminary step to understanding the
problem and mitigating this utility risk, using the solution provided
by the prior research [48].

Specifically, Wheels generates invariants using the foreground
app dataset (Sec. 4), which includes the time series traces of the top
100 apps gathered from selected APIs. These traces are analyzed
using Daikon [20] to extract invariants. For this purpose, Daikon
was configured in our research with a set of templates, referred to as
filters. To find single-channel invariants, filters were set to identify
the channels that increase monotonically, or decrease monotoni-
cally. For multi-channel invariants, we used a filter for detecting
linear invariants across all the channels (memory, network, CPU,
and storage) in the subset. After Daikon extracted the invariants, we
manually examined the outputs, discarding those already implied
by other invariants or considered spurious. Given the invariants
discovered, Wheels uses them as constraints and runs an integer
programming to adjust the randomly generated noise so as to en-
sure that the invariants are maintained within a channel and across
multiple channels in the APIs.

This approach is still preliminary, which may lead to false pos-
itives (fake invariants) and false negatives (missing invariants).
Further research is expected to understand the impact of the incon-
sistency risk and more effectively mitigate the risk.

Table 5: Results of Wheels on protecting different events.

Events Acc. before
Defense (%)

Random Guess
Acc. (%)

Acc. after
defense (%)

Foreground Apps 94.1 1.0 1.9
Websites 93.7 1.0 1.6

IoT activities 91.0 10.0 11.0

5.2 Experimental Results
In our research, we evaluated Wheels from two perspectives: secu-
rity and utility. For security, we studied the capability of Wheels to
defend against side-channel attacks as outlined in Sec. 4. To mea-
sure utility, we calculated the relative error between the outputs
generated by Wheels and the original output. We performed our
experiments on the foreground app dataset as described in Sec. 4.
The target merit score, 𝑇𝑚 , was set to 5 × 10−3 in the experiments.

Figure 7: Relative errors. The box in each box plot repre-
sents the first, second (median), and third quartiles, with the
horizontal lines indicating the range of these values. The
whiskers extend to cover all data points that fall within 1.5
times the interquartile range. Outliers are represented by
circle ("o") symbols.

We executed theMischief attack on the APIs protected byWheels
with noised outputs in the closed-world setting, as described in
Sec. 4. The results are presented in Table 5. As shown in the table,
all the attacks are reduced to random guess, which demonstrates
the effectiveness of the protection.

We also measured the impact of Wheels on the utility of the
protected APIs. Specifically, we calculated the relative error intro-
duced by Wheels with regards to the original returns of the APIs.
Fig. 7 shows the relative errors of the selected channels in Table 2
using 100 data points. As we can see from the figure, the majority
of errors introduced by Wheels are small, with 75% of them being
less than 0.4%, though some outliers go up to 1.6%.

6 RELATEDWORK
Several studies have investigated the potential for side-channel at-
tacks on Android devices. For example, it is possible to extract
information about running processes by accessing procfs and
sysfs [10, 18, 25, 26, 43, 50, 52, 55]. However, these studies have
only examined single-channel attacks and has not addressed how
to effectively combine multiple channels, which leads to an under-
estimation of the threat posed by multi-side-channel attacks. The
research in [53] is the initial examination of multi-side-channel
attacks on iOS and shares similarities with our study. However,
their approach of manually selecting channels and directly putting
them together does not provide a comprehensive understanding
of the multi-side-channel threat. As demonstrated in Sec. 4, their
approach is unlikely to be successful in current versions of iOS.

Additionally, aside from side-channel attacks on iOS, several
studies concentrate on combining multiple side channels [14, 19,
22, 30]. However, akin to [53], these studies also focus on manually
selected channels and employ methods specifically designed for
those channels. In contrast, we propose a more general approach
that automatically selects optimal channel combinations likely to
leak the most information, using more generic techniques (deep
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learning) to achieve this goal. We believe that this concept can
effectively address profiling attacks on other platforms as well. We
reserve this exploration for future work.

Prior to our work, several studies have concentrated on using
mobile sensors to infer personal information of users. For instance,
Zhou et al. [54] and Yu et al. [49] utilized microphone to eavesdrop
the lock pattern and keystrokes. Chen et al. [11] and Michalevsky
et al. [32] used the battery consumption data to infer the apps and
device location. Zhang et al. [51], Ba et al. [6], and Anand et al. [5]
leveraged accelerometer and gyroscope to exploit the side-channel
information of the smartphone. However, iOS provides security
features that make it more difficult for apps to perform these attacks
without the user’s knowledge. Since iOS 14, an orange icon will
appear on the screen whenever any app is using the microphone,
making it easier for users to identify and stop any suspicious ac-
tivity on their device. Additionally, iOS does not provide detailed
battery usage data to production apps. To access the accelerometer,
magnetometer, or gyroscope, apps must request permission from
the user, and the user will be prompted to grant or deny access
when the app first attempts to access the device’s motion data.
Therefore, any attack utilizing these sensors would only be feasible
if the attacker’s app has obtained access through user permission,
making it less stealthy and less practical on iOS.

Numerous studies show that website and/or app fingerprinting
can be performed by exploiting micro-architectural side channels,
such as cache timings [35, 42], and interrupt timings [12, 28]. How-
ever, these attacks have only been executed on desktop platforms,
and it remains uncertain whether they can be applied to iOS de-
vices, which would require extensive reverse-engineering of the
Apple device’s hardware configuration. Side channel attacks on iOS
devices are challenging for two reasons. First, Apple conceals the
underlying complexities of their devices from both users and app
developers, and does not provide comprehensive documentation
about the system. Therefore, security research often starts with
reverse engineering. Secondly, dynamic analysis is hard on iOS
devices, since it requires compromising the operating system and
removing security restrictions to debug arbitrary applications [8].
Even then, kernel debugging is often not possible. These limitations
make understanding hardware configurations challenging. Further-
more, microarchitectural side channel attacks need to be tailored
to the specific hardware configuration of the targeted system [42],
whereas our attack is meant to be hardware-agnostic.

Further, besides the OS-level attacks, there is little success re-
ported on iOS by prior research, with only two exceptions focusing
on electromagnetic side-channel attacks [23, 29]. Note that these
two studies are based upon different threat models than ours. Specif-
ically, Genkin et al. [23] reveals that by employing magnetic probes
in close proximity to the iPhone or power probes connected to its
USB cable, ECDSA keys utilized in OpenSSL and CoreBitcoin on
iPhones can be extracted. Lisovets et al. [29] shows that Apple’s
proprietary AES coprocessor hardware is also susceptible to elec-
tromagnetic side-channel attacks. However, the attack reported
by Lisovets et al. [29] was performed on old iPhone models (e.g.,
iPhone 4) and is deemed infeasible for iPhone 6 and newer versions.
Furthermore, both studies require the attacker to have physical
access to the device, which is much stronger than our threat model.

7 CONCLUSIONS
In this paper, we introduced the Mischief attack, which system-
atically analyzes multi-side-channel leakages. We effectively con-
ducted real world attacks on today’s iOS, including identifying
foreground apps, website visits, and sensitive IoT operations. These
examples show that the information leakage frommultiple channels
poses a real risk to users’ privacy. To address the issue, we proposed
Wheels, an approach for multi-side-channel leakage control which
is applied to the entire system. The experiments show that Wheels
can defend against the proposed attacks while preserving the origi-
nal functionality of iOS APIs. Our research provides guidance for
future defenses against multi-channel combination attacks.
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