Leaky Cauldron on the Dark Land: Understanding Memory Side-Channel Hazards in SGX

^{1,4}<u>Wenhao Wang</u>, ²Guoxing Chen, ¹Xiaorui Pan, ²Yinqian Zhang, ¹XiaoFeng Wang, ³Vincent Bindschaedler, ¹Haixu Tang and ³Carl A. Gunter

¹Indiana University Bloomington ²The Ohio State University ³University of Illinois Urbana-Champaign ⁴Institute of Information Engineering

Processor Reserved Memory (PRM)

Controlled-channel attacks: OS controls page tables and set traps by making pages inaccessible!

DEJA VU

T-SGX DEJA VU Deterministic multiplexing

Our contributions

□ A comprehensive understanding of SGX memory side channels.

> 8 attack vectors.

Our contributions

□ A comprehensive understanding of SGX memory side channels.

8 attack vectors.

□ Reducing AEXs induced by page level attacks.

> A new type of attacks.

Our contributions

A comprehensive understanding of SGX memory side channels.

8 attack vectors.

- □ Reducing AEXs induced by page level attacks.
 - > A new type of attacks.

Achieving finer-grained (than 4 KB) spatial granularity.
 Cache-DRAM attack.

mov (%rax), %rbx

mov (%rax), %rbx

- □ V1. Shared TLB entries under HT.
- □ V2. Selective TLB entries flushing without HT.
- □ V3. Referenced PTEs are cached as data.
- □ V4. Updates of accessed flags.
- □ V5. Updates of dirty flags.
- □ V6. Triggering page faults with P/X or reserved bits.
- □ V7. CPU caches are shared between the enclave and non-enclave code.
- □ V8. The memory hierarchy, specifically the row buffers are shared.

- □ V1. Shared TLB entries under HT.
- □ V2. Selective TLB entries flushing without HT.
- □ V3. Referenced PTEs are cached as data.
- □ V4. Updates of accessed flags.
- □ V5. Updates of dirty flags.
- □ V6. Triggering page faults with P/X or reserved bits.
- □ V7. CPU caches are shared between the enclave and non-enclave code.
- □ V8. The memory hierarchy, specifically the row buffers are shared.

□ V1. Shared TLB entries under HT.

- □ V2. Selective TLB entries flushing without HT.
- □ V3. Referenced PTEs are cached as data.
- □ V4. Updates of accessed flags.
- □ V5. Updates of dirty flags.
- □ V6. Triggering page faults with P/X or reserved bits.
- □ V7. CPU caches are shared between the enclave and non-enclave code.
- □ V8. The memory hierarchy, specifically the row buffers are shared.

□ V1. Shared TLB entries under HT.

□ V2. Selective TLB entries flushing without HT.

- □ V3. Referenced PTEs are cached as data.
- □ V4. Updates of accessed flags.
- □ V5. Updates of dirty flags.
- □ V6. Triggering page faults with P/X or reserved bits.
- □ V7. CPU caches are shared between the enclave and non-enclave code.
- □ V8. The memory hierarchy, specifically the row buffers are shared.

- □ V1. Shared TLB entries under HT.
- □ V2. Selective TLB entries flushing without HT.
- □ V3. Referenced PTEs are cached as data.
- □ V4. Updates of accessed flags.
- □ V5. Updates of dirty flags.
- □ V6. Triggering page faults with P/X or reserved bits.
- □ V7. CPU caches are shared between the enclave and non-enclave code.
- □ V8. The memory hierarchy, specifically the row buffers are shared.

- □ V1. Shared TLB entries under HT.
- □ V2. Selective TLB entries flushing without HT.
- □ V3. Referenced PTEs are cached as data.
- □ V4. Updates of accessed flags.
- □ V5. Updates of dirty flags.
- □ V6. Triggering page faults with P/X or reserved bits.
- □ V7. CPU caches are shared between the enclave and non-enclave code.
- □ V8. The memory hierarchy, specifically the row buffers are shared.

Can we make the attack stealthy by reducing AEXs induced by the attack?

- □ V1. Shared TLB entries under HT.
- □ V2. Selective TLB entries flushing without HT.
- □ V3. Referenced PTEs are cached as data.
- □ V4. Updates of accessed flags.
- □ V5. Updates of dirty flags.
- □ V6. Triggering page faults with P/X or reserved bits.
- □ V7. CPU caches are shared between the enclave and non-enclave code.
- □ V8. The memory hierarchy, specifically the row buffers are shared.

V4. Updates of accessed flags.

V4. Updates of accessed flags.

"Whenever the processor uses a paging-structure entry as part of linearaddress translation, it sets the accessed flag in that entry (if it is not already set)."

4

3

W

2

1

6

D

0

Ρ

Basic accessed flags monitoring attack: B-SPM

Basic accessed flags monitoring attack: B-SPM

Basic accessed flags monitoring attack: B-SPM

group size	Page-fault based		Accessed-flag based	
	words	%	words	%
1	51599	83.05	45649	73.47
2	7586	12.21	8524	13.72
3	2073	3.34	3027	4.87
4	568	0.91	1596	2.57
5	200	0.32	980	1.58
6	60	0.10	810	1.30
7	35	0.06	476	0.77
8	8	0.01	448	0.72
9	0	0	306	0.49
10	0	0	140	0.23
> 10	0	0	173	0.28

Evaluate on Hunspell.

Slowdown is brought down from $1214.9 \times$ for page fault attack to $5.1 \times$ for B-SPM attack.

What about if the pages that frequently accessed are to be observed?

Timing enhancement: T-SPM

Timing enhancement: T-SPM

Timing enhancement: T-SPM

Evaluate on FreeType.

Slowdown is brought down from $252 \times$ for page fault attack to $0.16 \times$ for T-SPM attack.

trigger page	0x0005B000		
	0005B000, 0005B000		
	0005B000, 00065000		
α - β pairs	0005B000, 0005E000		
	00065000, 00022000		
	0005E000, 00018000		

Can the side effect be further reduced?

□ V1. Shared TLB entries under HT.

- □ V2. Selective TLB entries flushing without HT.
- □ V3. Referenced PTEs are cached as data.
- □ V4/5. Updates of accessed/dirty flags.
- □ V6. Triggering page faults with P/X or reserved bits.
- □ V7. CPU caches are shared between the enclave and non-enclave code.
- □ V8. The memory hierarchy, specifically the row buffers are shared.

TLB flushing with HT (Vector 1): HT-SPM

TLB flushing with HT (Vector 1): HT-SPM

TLB flushing with HT (Vector 1): HT-SPM

Evaluation on EdDSA of Libgcrypt v1.7.6

```
void
_gcry_mpi_ec_mul_point (mpi_point_t result,
                        gcry_mpi_t scalar, mpi_point_t point,
                        mpi_ec_t ctx) {
  if (ctx->model == MPI_EC_EDWARDS
      || (ctx->model == MPI_EC_WEIERSTRASS
          && mpi_is_secure (scalar))) {
    if (mpi_is_secure (scalar)) {
      /* If SCALAR is in secure memory we assume that it is the
            secret key we use constant time operation. */
      . . .
    3
    else {
      for (j=nbits-1; j >= 0; j--) {
        _gcry_mpi_ec_dup_point (result, result, ctx);
        if (mp1_test_bit (scalar, j))
           gcry_mpi_ec_add_points (result, result, point, ctx
    return;
```

Evaluation on EdDSA of Libgcrypt v1.7.6

Attacks	Number of AEXs
Page fault attack	71,000
B-SPM attack	33,000
T-SPM attack	1,300

* HT-SPM is designed to reduce AEXs for data pages, and is not presented in the comparison.

Evaluation on EdDSA of Libgcrypt v1.7.6

Attacks	Number of AEXs
Page fault attack	71,000
B-SPM attack	33,000
T-SPM attack	1,300

* HT-SPM is designed to reduce AEXs for data pages, and is not presented in the comparison.

Cache-based attack

> Prime+Probe: 16 KB, if 2048 cache set, 128 MB EPC

Flush+Reload: 64 B

Cache-based attack

- > Prime+Probe: 16 KB, if 2048 cache set, 128 MB EPC
- Flush+Reload: 64 B
- DRAMA attack
 - The program needs to have a large memory footprint, otherwise the memory reference will mostly hit the cache.

Cache-based attack

- > Prime+Probe: 16 KB, if 2048 cache set, 128 MB EPC
- ➤ Flush+Reload: 64 B
- DRAMA attack
 - The program needs to have a large memory footprint, otherwise the memory reference will mostly hit the cache.

Cache-DRAM attack: finer-grained attack with less noise.

Cache-DRAM attack

- 64 B granularity
- DRAM rows are only shared among enclaves.
 No high resolution timer inside the enclaves.

Cache-DRAM attack

- 64 B granularity
- DRAM rows are only shared among enclaves.
 No high resolution timer inside the enclaves.

Evaluation on a conditional branch in Gap 4.8.6. 14.6% detection, <1% false detection.

Vectors	Spatial granularity	AEX	Slow-down
* i/dCache PRIME+PROBE	2 MB	High	High
* L2 Cache PRIME+PROBE	128 KB	High	High
L3 Cache PRIME+PROBE	16 KB	None	Modest
Page fault attack	4 KB	High	High
B/T-SPM	4 KB	Modest	Modest
HT-SPM	4 KB	None	Modest
Cross-enclave DRAMA	1 KB	None	High
Cache-DRAM	64 B	None	Minimal

* Do not consider attacks under HT. Otherwise the AEX and slow-down will be low.

Vectors	Spatial granularity	AEX	Slow-down
* i/dCache PRIME+PROBE	2 MB	High	High
* L2 Cache PRIME+PROBE	128 KB	High	High
L3 Cache PRIME+PROBE	16 KB	None	Modest
Page fault attack	4 KB	High	High
B/T-SPM	4 KB	Modest	Modest
HT-SPM	4 KB	None	Modest
Cross-enclave DRAMA	1 KB	None	High
Cache-DRAM	64 B	None	Minimal

* Do not consider attacks under HT. Otherwise the AEX and slow-down will be low.

Vectors	Spatial granularity	AEX	Slow-down
* i/dCache PRIME+PROBE	2 MB	High	High
* L2 Cache PRIME+PROBE	128 KB	High	High
L3 Cache PRIME+PROBE	16 KB	None	Modest
Page fault attack	4 KB	High	High
B/T-SPM	4 KB	Modest	Modest
HT-SPM	4 KB	None	Modest
Cross-enclave DRAMA	1 KB	None	High
Cache-DRAM	64 B	None	Minimal

* Do not consider attacks under HT. Otherwise the AEX and slow-down will be low.

□ We identified 8 attack vectors in SGX memory management.

Looking again at the attack surfaces

mov (%rax), %rbx

□ We identified 8 attack vectors in SGX memory management.

> There can be more.

□ We identified 8 attack vectors in SGX memory management.

> There can be more.

□ New attacks that induce few AEXs, that bypass existing defenses

□ We identified 8 attack vectors in SGX memory management.

> There can be more.

□ New attacks that induce few AEXs, that bypass existing defenses

> Interrupts are not necessary to attack the enclave.

□ We identified 8 attack vectors in SGX memory management.

> There can be more.

□ New attacks that induce few AEXs, that bypass existing defenses

- > Interrupts are not necessary to attack the enclave.
- □ Attacks can achieve finer-grained spatial granularity.

□ We identified 8 attack vectors in SGX memory management.

> There can be more.

□ New attacks that induce few AEXs, that bypass existing defenses

- > Interrupts are not necessary to attack the enclave.
- □ Attacks can achieve finer-grained spatial granularity.
- □ Attack vectors can be combined to be more effective
 - > TLB flushing + SPM, Cache + DRAM, Page monitoring + timing
 - > Others?

□ We identified 8 attack vectors in SGX memory management.

> There can be more.

□ New attacks that induce few AEXs, that bypass existing defenses

> Interrupts are not necessary to attack the enclave.

- □ Attacks can achieve finer-grained spatial granularity.
- □ Attack vectors can be combined to be more effective
 - > TLB flushing + SPM, Cache + DRAM, Page monitoring + timing
 - > Others?

Defenses?

Thanks! Any questions?

ww31@indiana.edu

Backup Slides

Characterizing memory vectors

Spatial granularity

The smallest unit of information directly observable to the adversary.

Temporal observability

The ability for the adversary to measure the timing signals generated during the execution of the target program.

Side effects

Observable anomalies caused by an attack, which could be employed to detect the attack, such as AEX.

Life cycle of an enclave thread

Related work on Security'17

U Vector 3, 4

mov (%rax), %rbx

