
Binary Code Retrofitting and Hardening Using SGX

Shuai Wang, Wenhao Wang, Qinkun Bao, Pei Wang, 

XiaoFeng Wang, and Dinghao Wu

The Pennsylvania State University, Indiana University Bloomington,

Institute of Information Engineering



Motivation

Available in Intel Commercial CPUs

Hardware isolated memory regions

Protection under a strong adversary 

model

A bit performance penalty (~10%)



Motivation

Can binary code hardening benefit from SGX?

Available in Intel Commercial CPUs

Hardware isolated memory regions

Protection under a strong adversary 

model

A bit performance penalty



Motivation

 Graphene-SGX, Haven

 Large TCB (53 kloc for 

Graphene-SGX)



Motivation

 Graphene-SGX, Haven

 Large TCB (53 kloc for 

Graphene-SGX)

 Our solution

 Techniques to dissect binary 

code into multiple 

components

 Put into separated enclaves



Background on SGX

 Two capabilities

 change in enclave 

memory access 

semantics

 protection of the 

address mappings of 

the application

Processor 

Reserved Memory 

(PRM)

ELRANGE
Enclave Page 

Cache (EPC)

address mapping



Background on SGX

 Life cycle

enclave 

mode

non-enclave 

mode

Enclave Initialization (ECREATE/EINIT)

Enclave Destroy (EREMOVE)

EENTER

EEXIT

ERESUME

AEX



Background on SGX

 Life cycle

enclave 

mode

non-enclave 

mode

Enclave Initialization (ECREATE/EINIT)

Enclave Destroy (EREMOVE)

EENTER

EEXIT

ERESUME

AEX



Background on SGX

 Controlled enclave entry

 Separated stack

 CPU state and registers 

are cleared if exceptions 

occur inside the enclaves.



Methodology



Methodology

Interface library: maintain routine code for ecall and ocall

ECALL

OCALL

ECALL



Methodology

In-place binary editing: Trampoline code

ECALL

OCALL

ECALL



Challenges

 Binary code reassembly disassembling

 Uroboros

 How to generate enclave libraries

 Intel SGX SDK

 Binary instrumentation to jump to the enclave entry

 Trampoline code

 Exceptions

 Customized exception handling inside the enclaves



Challenges

 Binary code reassembly disassembling

 Uroboros

 How to generate enclave libraries

 Intel SGX SDK

 Binary instrumentation to jump to the enclave entry

 Trampoline code

 Exceptions

 Customized exception handling inside the enclaves



Some technique details

 In-place binary editing 

 Trampoline code



Some technique details

 Exceptions

 Customized exception handling inside the enclaves



Proof-of-concept implementation

 Extend Uroboros with SGX instrumentation functionalities.

 Employ the core functionality of Uroboros to identify program relocation 

symbols (e.g., code pointers).

 Use industrial standard reverse engineering tool (IDA-Pro) to recover the 

function type information.

 Implement the instrumentation functionality in Scala, with over 1,700 

LOC.

 The proof-of-concept implementation of the exception handling 

mechanism adds 56 lines of C code.



Evaluation

 Evaluations mainly focus on understanding the feasibility and 

cost of the instrumentation products.

 Two major factors would contribute to the performance penalty of 

the SGX protected code:

 Execution slowdown of code components inside enclaves.

 Cross-enclave control flow transfers, e.g., enclave ECALL.



Evaluation Setup

 Our preliminary evaluation instruments sensitive procedures

provided by cryptographic libraries.

 AES implementation in OpenSSL (version 0.9.7)

 Write sample code to trigger the encryption and decryption

functions in the library.

 key length is set as 256.

 AES electronic codebook (ECB) mode.



Evaluation Setup

To measure the performance cost of code within enclave (first factor):

• All encryption/decryption computations are performed within one 

enclave.

• Pointers on key and data blocks are passed in through the interface.



Evaluation Setup

To measure the impact of inter-enclave control flow transfers (second 

factor):

• Put the block-level encryption/decryption functions into the enclave.

• Control the number of inter-enclave control transfers by changing the 

length of the input data.



Evaluation Results

4× overhead over

computation without 

SGX

when processing over 

100k data blocks, 

overhead is 6.91%.



Evaluation Results

We measure the size increase in terms of multiple components:

• Size of output binary is identical with the input, since we perform in-

place binary instrumentation.

• Both SDK routines and our routine code introduce size increase.

• The overall size increase is within a reasonable extent.

• Evaluation One has three more functions than Evaluation Two.



Future works

 Limitations

 How to reliably recover the function prototype?

 How to deal with the shared variables among several isolated enclaves?

 Some instructions/operations may not be supported inside the enclaves.

 …



Thanks! 

Contact: ww31@indiana.edu

mailto:ww31@indiana.edu

