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 Large TCB (53 kloc for 

Graphene-SGX)

 Our solution

 Techniques to dissect binary 

code into multiple 

components

 Put into separated enclaves



Background on SGX

 Two capabilities

 change in enclave 

memory access 

semantics

 protection of the 

address mappings of 

the application
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(PRM)

ELRANGE
Enclave Page 

Cache (EPC)

address mapping
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Background on SGX

 Controlled enclave entry

 Separated stack

 CPU state and registers 

are cleared if exceptions 

occur inside the enclaves.
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Interface library: maintain routine code for ecall and ocall
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Methodology

In-place binary editing: Trampoline code

ECALL

OCALL
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Some technique details

 Exceptions

 Customized exception handling inside the enclaves



Proof-of-concept implementation

 Extend Uroboros with SGX instrumentation functionalities.

 Employ the core functionality of Uroboros to identify program relocation 

symbols (e.g., code pointers).

 Use industrial standard reverse engineering tool (IDA-Pro) to recover the 

function type information.

 Implement the instrumentation functionality in Scala, with over 1,700 

LOC.

 The proof-of-concept implementation of the exception handling 

mechanism adds 56 lines of C code.



Evaluation

 Evaluations mainly focus on understanding the feasibility and 

cost of the instrumentation products.

 Two major factors would contribute to the performance penalty of 

the SGX protected code:

 Execution slowdown of code components inside enclaves.

 Cross-enclave control flow transfers, e.g., enclave ECALL.



Evaluation Setup

 Our preliminary evaluation instruments sensitive procedures

provided by cryptographic libraries.

 AES implementation in OpenSSL (version 0.9.7)

 Write sample code to trigger the encryption and decryption

functions in the library.

 key length is set as 256.

 AES electronic codebook (ECB) mode.



Evaluation Setup

To measure the performance cost of code within enclave (first factor):

• All encryption/decryption computations are performed within one 

enclave.

• Pointers on key and data blocks are passed in through the interface.



Evaluation Setup

To measure the impact of inter-enclave control flow transfers (second 

factor):

• Put the block-level encryption/decryption functions into the enclave.

• Control the number of inter-enclave control transfers by changing the 

length of the input data.



Evaluation Results

4× overhead over

computation without 

SGX

when processing over 

100k data blocks, 

overhead is 6.91%.



Evaluation Results

We measure the size increase in terms of multiple components:

• Size of output binary is identical with the input, since we perform in-

place binary instrumentation.

• Both SDK routines and our routine code introduce size increase.

• The overall size increase is within a reasonable extent.

• Evaluation One has three more functions than Evaluation Two.



Future works

 Limitations

 How to reliably recover the function prototype?

 How to deal with the shared variables among several isolated enclaves?

 Some instructions/operations may not be supported inside the enclaves.

 …
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