Binary Code Retrofitting and Hardening Using SGX

Shuai Wang, Wenhao Wang, Qinkun Bao, Pei Wang,
XiaoFeng Wang, and Dinghao Wu

The Pennsylvania State University, Indiana University Bloomington,

Instit

S

Motivation

O Available in Intel Commercial CPUs
O Hardware isolated memory regions

O Protection under a strong adversary
model

O A bit performance penalty (~10%)

Motivation

O Available in Intel Commercial CPUs
O Hardware isolated memory regions

O Protection under a strong adversary
model

O A bit performance penalty

Can binary code hardening benefit from SGX?

Motivation

O Graphene-SGX, Haven

> Large TCB (53 kloc for
Graphene-SGX)

Shielding applications from an untrusted cloud with Haven

Andrew Baumann

Abstract

Today’s cloud computing infrastruc
tial trust. Cloud users rely on both t
its globally-distributed software/har
expose any of their private data.
We introduce the notion of shiel
protects the confidentiality and inte;
its data from the platform on which
operator’s OS, VM and firmware). |
is the first system to achieve shiel
modified legacy applications, inclu
Apache, on a commodity OS (Wi
ity hardware. Haven leverages the |
Intel SGX to defend against privil
cal attacks such as memory probes,
dual challenges of executing unma
and protecting them from a malici
motivated recent changes in the SG

Marcus Peinado Galen Hunt

Microsoft Research

Tha rurrent heet nractice for nrntectine cacrate in thae

oscarlab / graphene © Watch

Code Issues 27 Pull requests 11 Projects 0 EB Wiki Insights

Introduction to Intel SGX Support

chiache edited this page Jul 20, 2016 - 10 revisions

What is Intel SGX?

SGX (Software Guard Extenstion) is a new feature of the latest Intel CPUs. According to
https://github.com/ayeks/SGX-hardware, SGX is available in CPUs that are launched after October
1st, 2015.

Intel SGX is designed to protection critical applications against potentially malicious system stack,
from the operating systems to hardware (CPU itself excluded). SGX creates a hardware encrypted
memory region (so-called enclaves) from the protected applications, that neither compromised
operating systems, nor hardware attack such as cold-boot attack can retrieve the application
secrets.

Why use Graphene Library OS for Intel SGX?

Porting applications to Intel SGX platform can be cumbersome. To secure an application with SGX,
developers must recompile the application executable with the Intel SDK (Linux SDK:
https://github.com/01org/linux-sgx). Moreover, the secured applications have no access to any OS
features, such as opening a file, creating a network connection, or cloning a thread. For any
interaction with the host, developers must define untrusted interfaces that the secure applications can
call to leave the enclaves.

Graphene Library OS provides the OS features needed by the applications, right inside the SGX
enclaves. To secure any applications, developers can directly load native, unmodified binaries into
enclaves, with minimal porting efforts. Graphene Library OS provides signing tool to sign all binaries
that are loaded into the enclaves, just like the Intel SGX SDK.

22

HStar | 99 VFork 41

» Pages €3

Basics

Introduction to Graphene
Quick Start

Run Applications in Graphene
Manifest Syntax
Implemented System Calls

Building Linux Kernel Support

Intel SGX Support

Intraduction to Intel SGX
Support

Quick Start

Run Applications with SGX.
Manifest Syntax
Debugging 5GX Support

Developer's Guide

Debugging Graphene

PAL Host ABI

Port Graphene PAL to Other
Haosts

Motivation

O Graphene-SGX, Haven

> Large TCB (53 kloc for
Graphene-SGX)

O Our solution

>

Techniques to dissect binary
code into multiple

components

Put into separated enclaves

Shielding applications from an untrusted cloud with Haven

Andrew Baumann Marcus Peinado Galen Hunt

Abstract

Today’s cloud computing infrastruc
tial trust. Cloud users rely on both t
its globally-distributed software/har
expose any of their private data.
We introduce the notion of shiel
protects the confidentiality and inte;
its data from the platform on which
operator’s OS, VM and firmware). |
is the first system to achieve shiel
modified legacy applications, inclu
Apache, on a commodity OS (Wi
ity hardware. Haven leverages the |
Intel SGX to defend against privil
cal attacks such as memory probes,
dual challenges of executing unma
and protecting them from a malici
motivated recent changes in the SG

Microsoft Research

Tha rurrent heet nractice for nrntectine cacrate in thae

oscarlab / graphene © Watch

Code Issues 27 Pull requests 11 Projects 0 EB Wiki Insights

Introduction to Intel SGX Support

chiache edited this page Jul 20, 2016 - 10 revisions

What is Intel SGX?

SGX (Software Guard Extenstion) is a new feature of the latest Intel CPUs. According to
https://github.com/ayeks/SGX-hardware, SGX is available in CPUs that are launched after October
1st, 2015.

Intel SGX is designed to protection critical applications against potentially malicious system stack,
from the operating systems to hardware (CPU itself excluded). SGX creates a hardware encrypted
memory region (so-called enclaves) from the protected applications, that neither compromised
operating systems, nor hardware attack such as cold-boot attack can retrieve the application
secrets.

Why use Graphene Library OS for Intel SGX?

Porting applications to Intel SGX platform can be cumbersome. To secure an application with SGX,
developers must recompile the application executable with the Intel SDK (Linux SDK:
https://github.com/01org/linux-sgx). Moreover, the secured applications have no access to any OS
features, such as opening a file, creating a network connection, or cloning a thread. For any
interaction with the host, developers must define untrusted interfaces that the secure applications can
call to leave the enclaves.

Graphene Library OS provides the OS features needed by the applications, right inside the SGX
enclaves. To secure any applications, developers can directly load native, unmodified binaries into
enclaves, with minimal porting efforts. Graphene Library OS provides signing tool to sign all binaries
that are loaded into the enclaves, just like the Intel SGX SDK.

22

HStar | 99 VFork 41

» Pages €0)

Basics

Introduction to Graphene
Quick Start

Run Applications in Graphene
Manifest Syntax
Implemented System Calls
Building Linux Kernel Support

Intel SGX Support

Intraduction to Intel SGX
Support

Quick Start

Run Applications with SGX.
Manifest Syntax
Debugging 5GX Support

Developer's Guide

Debugging Graphene

PAL Host ABI

Port Graphene PAL to Other
Haosts

Background on SGX

O Two capabilities

» change in enclave
memory access
semantics

> protection of the
address mappings of
the application

address mapping

ELRANGE

Processor
Reserved Memory
(PRM)

Enclave Page
Cache (EPC)

ZERN

Background on SGX

O Life cycle

EENTER

ERESUME
non-enclave —
mode AEX
EEXIT

Background on SGX

O Life cycle

EENTER

ERESUME

non-enclave
mode

Background on SGX

O Controlled enclave entry e enclave.
O Separated stack st
0O CPU state and registers S
= XCX - the address of the instruction following the EENTER

are Cleared if exceptions : XDI - the reason of entering the enclave
Occur inSide the enclavesl : XSI - the pointer to the marshalling structure

DECLARE GLOBAL FUNC enclave entry

E

Dispatch code according to C55A and the reason of EENTER
Bax » 8 - exception handler
B - ecall

edi == -1 - do_init enclave

= edl »

edi == -2 - oret
Registers
Mo need to use any register during the dipatc

Methodology

- ---- data ;I'Jn::inter ng trUSted
-4—— function call part
data |4 enclave 1
R 4 data | @z P @---. -F-.
text Func _ -7«
L TFunct - ne _
<L N 27" enclave 2
FI2 |&
-4 Func2
L = - Func3
Func3 FT3

Methodology

-4 - - - - data pointer
44— function call

:T__._ sgxecall: UUPECSETEEEE IR SGX trusted
sxaca'.rd_,. ; part
v/ .data 4 Interface Lib1
. — data p ‘ caLl en;.:lave1
tex routines |« }-- --t s Func?2
| Func text / cALl
(N <,_.- Func ,
<:.-- Func? o 1V Interface Lib2 enclave 2
~ Funcl T3 / »| routines |—HECALLL ! Func3

Interface library: maintain routine code for ecall and ocall

Methodology

-4 - - - - data pointer
44— function call

<« — — - sgxecall JEUUPRSCEELIEEEERRS SGX trusted
<% --- - sgxocall e
v/ .data 4" |Interface Lib1 -
, data enclave 1
text A routines <« - eI Func?
 Func text / |
< N <,_.- Funct ,
<:.-- Func?2 ETo Interface Lib2 enclave 2
~ Funca T3 | L| routines |— + | Func3

In-place binary editing: Trampoline code

Challenges

O Binary code reassembly disassembling
» Uroboros

O How to generate enclave libraries
> Intel SGX SDK

O Binary instrumentation to jump to the enclave entry
> Trampoline code

O Exceptions
» Customized exception handling inside the enclaves

Challenges

O Binary code reassembly disassembling
» Uroboros

O How to generate enclave libraries
> Intel SGX SDK

O Binary instrumentation to jump to the enclave entry
> Trampoline code

O Exceptions
» Customized exception handling inside the enclaves

Some technique details

O In-place binary editing
» Trampoline code

1 trampoline_foo:

2 push %rbp

3 mov %rsp,%rbp

4 push $return_addr

5 push Y%rax

6 mov $sgx_interface_foo,%rax
7 xchg %rax, (%rsp)

8 ret

9 pop %rbp

10 ret

Some technique details

O Exceptions

» Customized exception handling inside the enclaves

O 0 1 O U1 e W NS

[
-

exception_exit:

mov
mov
call
mov
mov
mov
mov
mov
enclu

%EgS :0x0 ,%rax

%rax ,%rbx
update_ocall_lastsp
O0x20 (%rbx) ,%rdx
O0x98 (%rdx) ,%rbp
0x90 (%rdx) ,%rsp
$target_addr ,%rbx
$EEXIT, %rax

Proof-of-concept implementation

O Extend Uroboros with SGX instrumentation functionalities.

> Employ the core functionality of Uroboros to identify program relocation
symbols (e.g., code pointers).

» Use Industrial standard reverse engineering tool (IDA-Pro) to recover the
function type information.
O Implement the instrumentation functionality in Scala, with over 1,700
LOC.

O The proof-of-concept implementation of the exception handling
mechanism adds 56 lines of C code.

Evaluation

N

O Evaluations mainly focus on understanding the feasibility and
cost of the instrumentation products.

O Two major factors would contribute to the performance penalty of
the SGX protected code:

» Execution slowdown of code components inside enclaves.
» Cross-enclave control flow transfers, e.g., enclave ECALL.

Evaluation Setup

.

O Our preliminary evaluation instruments sensitive procedures
provided by cryptographic libraries.

O AES implementation in OpenSSL (version 0.9.7)

> Write sample code to trigger the encryption and decryption
functions in the library.

> key length Is set as 256.
> AES electronic codebook (ECB) mode.

Evaluation Setup

Functions

Evaluation Two AES__decrypt, AES__encr_ypt

To measure the performance cost of code within enclave (first factor):
« All encryption/decryption computations are performed within one
enclave.
« Pointers on key and data blocks are passed in through the interface.

Evaluation Setup

Functions

Evaluation One AES decrypt, AES encrypt, AES ecb_encrypt, enc, dec

Evaluation Two AES decrypt, AES encrypt

To measure the impact of inter-enclave control flow transfers (second
factor):
« Put the block-level encryption/decryption functions into the enclave.
« Control the number of inter-enclave control transfers by changing the
length of the input data.

Evaluation Results

@ Baseline (ms) - Evaluation One (ms) === Evaluation Two (ms)

1800

1600 /ﬁﬁﬁfﬁ%y

1400 ﬂ{fﬁﬁfﬁy
=

1200 /{ﬁﬁw
1000 ﬁ%g?

800 =
600

400

200

100000 150000 200000 250000
NUMBER OF ENCRYPTED AND DECRYPTED BLOCKS

300000

4X overhead over
computation without
SGX

when processing over
100k data blocks,
overhead is 6.91%.

Evaluation Results

Case Input Bin (KB) utput Bin (KB) nterface Libs (KB) nclaves (KB) utput lota
Evaluation One 48 48 16 116 180
Evaluation Two 48 48 12 108 168

We measure the size increase in terms of multiple components:

« Size of output binary is identical with the input, since we perform in-
place binary instrumentation.

 Both SDK routines and our routine code introduce size increase.
» The overall size increase is within a reasonable extent.

« Evaluation One has three more functions than Evaluation Two.

Future works

O Limitations
> How to reliably recover the function prototype?

> How to deal with the shared variables among several isolated enclaves?

> Some instructions/operations may not be supported inside the enclaves.

Thanks

edu

lana

Ind

@

ww31

Contact

—

S S
e
Qﬂ\lﬁ
e e o)

wN\wWﬁvav(

mailto:ww31@indiana.edu

