
Racing in Hyperspace: Closing Hyper-Threading
Side Channels on SGX with Contrived Data Races

Guoxing Chen∗, Wenhao Wang†‡, Tianyu Chen†, Sanchuan Chen∗, Yinqian Zhang∗,
XiaoFeng Wang†, Ten-Hwang Lai∗, Dongdai Lin‡

∗The Ohio State University, †Indiana University Bloomington
‡SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences

{chen.4329,chen.4825,zhang.834,lai.1}@osu.edu, {wangwenhao,ddlin}@iie.ac.cn, {chen512,xw7}@indiana.edu

Abstract—In this paper, we present HYPERRACE, an LLVM-
based tool for instrumenting SGX enclave programs to eradicate
all side-channel threats due to Hyper-Threading. HYPERRACE
creates a shadow thread for each enclave thread and asks the
underlying untrusted operating system to schedule both threads
on the same physical core whenever enclave code is invoked,
so that Hyper-Threading side channels are closed completely.
Without placing additional trust in the operating system’s CPU
scheduler, HYPERRACE conducts a physical-core co-location test:
it first constructs a communication channel between the threads
using a shared variable inside the enclave and then measures the
communication speed to verify that the communication indeed
takes place in the shared L1 data cache—a strong indicator of
physical-core co-location. The key novelty of the work is the
measurement of communication speed without a trustworthy
clock; instead, relative time measurements are taken via contrived
data races on the shared variable. It is worth noting that the
emphasis of HYPERRACE’s defense against Hyper-Threading
side channels is because they are open research problems. In
fact, HYPERRACE also detects the occurrence of exception- or
interrupt-based side channels, the solutions of which have been
studied by several prior works.

I. INTRODUCTION

The growing demands for secure data-intensive computing

and rapid development of hardware technologies bring in

a new generation of hardware support for scalable trusted

execution environments (TEE), with the most prominent ex-

ample being Intel Software Guard Extensions (SGX). SGX

is a set of CPU instructions that enable a user-land process

to allocate a chunk of private memory, called an enclave,

to protect its execution from the untrusted operating system

(OS) and even a rogue system administrator. Sensitive data

outside the enclave are encrypted, and only decrypted within

the enclave, when they are loaded into the CPU, to avoid

direct exposure of their content to the untrusted parties (i.e.,
the OS and the administrator). With all such protection in

place, however, today’s SGX design has been found to still

leak out the program’s runtime traces through various side
channels, allowing the OS-level adversary to infer sensitive

data processed inside the enclave.

One example of such side channels is the page-fault chan-

nels [1], [2] in which the adversary with full control of the

OS can induce page faults (by manipulating the page tables

The two lead authors contribute equally to the work and are ordered alpha-
betically. Corresponding author: Wenhao Wang (wangwenhao@iie.ac.cn).

inside the kernel) during an enclave program’s runtime, so as

to identify the secret data the program’s page access pattern

depends upon. The page-fault attacks have been improved

recently [3], [4] by monitoring the updates of accessed flag in

the page table entries (PTEs) by the enclave program to infer

its page access pattern without causing page faults. Besides,

traditional micro-architectural side channels also exist in the

SGX context, including the CPU cache attacks [5], [6], [7],

[8], branch target buffer (BTB) attacks [9], cache-DRAM

attacks [4], etc. A comprehensive list of memory side channels

in SGX has been summarized in a prior paper [4].

Same-core side channels. To collect information through any

of these side channels, the adversary needs to either run the at-

tack program on the same core executing the enclave program

(same-core side channels) or monitor the victim’s operations

from a different core (cross-core side channels), depending on

the nature of the channel he uses. A prominent example of

cross-core channels is the last-level cache (LLC) [10], [11],

[12], [13], [14], in which the attack program operates on

another core and measures its own use of the LLC to infer the

victim’s cache usage. Cross-core side channels in SGX are no

different from those in other contexts, which tend to be noisy

and often harder to exploit in practice (e.g., to synchronize

with the victim). By comparison, the noise-free and easy-to-

exploit same-core side channels are uniquely threatening under

the SGX threat model. Conventional ways to exploit same-core

channels are characterized by a large number of exceptions or

interrupts to frequently transfer the control of a core back and

forth between an enclave process and the attacker-controlled

OS kernel, through a procedure called Asynchronous Enclave
Exits (AEX). Such AEX-based side-channel attacks have been

intensively studied [1], [2], [15], [9] and new defense proposals

continue to be made, often based upon detection of high

frequency AEXs [16], [17]. This feature, however, is found to

be evadable through exploiting a set of side channels enabled

or assisted by Hyper-Threading (called Hyper-Threading side-
channel attacks), which do not trigger a large number of

interrupts. To the best of our knowledge, no prior work has

successfully mitigated Hyper-Threading side channels in SGX.

This paper reports a study that aims at filling this gap,

understanding and addressing the security threats from Hyper-

Threading side channels in the SGX setting, and deriving

178

2018 IEEE Symposium on Security and Privacy

© 2018, Guoxing Chen. Under license to IEEE.
DOI 10.1109/SP.2018.00024

novel protection to close all Hyper-Threading side channels.

In addition, our solution seamlessly integrates with a method

to detect AEXs from within the enclave, and thus completely

eliminates all same-core side channels on SGX.

Challenges. Hyper-Threading is Intel’s simultaneous multi-

threading (SMT) technologies implemented in many of its

mainstream processors today (e.g., Xeon and Core ‘i’ Se-

ries). While Hyper-Threading greatly increases the degree of

instruction-level parallelism, by allowing two threads to share

the same physical core and hence many per-core resources, it

also enables or assists a variety of side-channel attacks. For

example, because micro-architectural resources, such as the

BTB, the translation lookaside buffer (TLB), the L1 instruction

cache and data cache, the unified L2 cache, and the floating-

point units (FPU), are shared between the two logical cores

of the same physical core, side-channel attacks that leverage

these shared resources to extract secrets are enabled [18], [19],

[20], [21], [22], [23], [24], [25]. Moreover, Hyper-Threading

facilitates some types of side-channel attacks. For example, in

the SPM attacks that monitor the accessed flag of the PTEs,

an adversary may take advantage of Hyper-Threading to flush

the TLB entries of the victim enclave, forcing a page table

walk and a PTE update when the memory page is visited by

the enclave program again [4].

Defending against the Hyper-Threading side-channel leaks

is challenging. Simply disabling Hyper-Threading is not an

option, because it greatly degrades the performance of the

processors, making the SGX systems less suitable for data-

intensive computing. Moreover, even if it is reasonable for

the owner of the enclaves to request the code to run only

on CPUs not supporting Hyper-Threading or with the feature

disabled, there is no effective way for software programs

running inside SGX enclaves to verify this artifact: The

enclave code cannot execute the cpuid instruction directly

to learn the number of available cores; the rdtscp and

rdpid instructions return the current processor ID from the

IA32_TSC_AUX register [26], which, however, is controlled

by the untrusted OS. Furthermore, these instructions are not

currently supported in the enclave mode. Remote attestation

does not cover information about Hyper-Threading, either. One

viable solution is to create a shadow thread from the enclave

program and ask the OS to schedule it on the other logical

core, so that no other process can share the same physical

core as the enclave program. However, it is very challenging

to reliably verify such a scheduling arrangement performed by

the untrusted OS. To make this approach work, we need an

effective physical-core co-location test to determine whether

two threads are indeed scheduled on the same physical core.

HYPERRACE. A micro-architecture feature we can leverage

to conduct reliable physical-core co-location tests is that

the two enclave threads running on the same physical core

can communicate (through a shared variable inside the same

enclave) with each other much faster through per-core caches

(e.g., the L1 cache) than the communication between physical

cores (or CPU packages) through the L3 cache or the memory.

However, this fast communication channel requires a reliable

and trustworthy clock to measure the communication speed,

which, unfortunately, is absent inside SGX enclaves: the SGX

version 1 processors do not support the rdtsc/rdtscp
instructions in the enclave mode; and although SGX version

2 plans to introduce support for the rdtsc/rdtscp in-

structions, the clock seems to be untrusted and can still be

changed by the OS [26, Chapter 38.6.1]. Without such a clock,

measurements of the communication speed, which are critical

for verifying the co-location of two threads on the same core,

become difficult.

To address this problem, we present in this paper a unique

technique that utilizes contrived data races between two
threads of the same enclave program to calibrate their inter-
communication speed using the speed of their own executions.

More specifically, data races are created by instructing both

threads to simultaneously read from and write to a shared

variable. By carefully constructing the read-write sequences

(Sec. IV), it is ensured that when both threads operate on

the same core, they will read from the shared variable the

value stored by the other thread with very high probabilities.

Otherwise, when the threads are scheduled to different cores,

they will, with high probabilities, only observe values stored

by themselves.

The contrived data races establish an “authenticated” com-

munication channel because, first, the shared variable is lo-

cated inside the enclave’s protected memory so that its confi-

dentiality and integrity are protected by SGX, and, second, the

measurement of the channel’s communication speed is verified
by the execution speed of the communication code. The

security guarantee of this verification lies in the adversary’s in-

ability to arbitrarily manipulate the relative speed between the

threads’ execution speed and their inter-communication speed.

Our security analysis demonstrates that even an adversary that

controls the entire OS cannot schedule the two threads on

different physical cores while ensuring they will observe data

races on the shared variable with high probabilities.

Using this technique, we designed and implemented an

LLVM-based tool, called HYPERRACE, which compiles an

enclave program from the source code and instruments it at

the intermediate representation (IR) level to conduct frequent

AEX and co-location tests during the execution of the enclave

program. The resulting binary is an enclave program that auto-

matically protects itself from all Hyper-Threading side-channel

attacks (and other same-core side-channel attacks), completely

closing such side channels. We combine an analytical security

model with empirical measurements on SGX processors to

conduct a thorough security analysis on our scheme. We

also empirically conducted several attacks to subvert the co-

location tests and found all of them can be effectively detected

by HYPERRACE. Our performance evaluation is conducted

by protecting an SGX version of nbench and Intel’s SGX

SSL library. The results suggest that the runtime overhead for

nbench applications due to the HYPERRACE’s instrumentation

in each basic block (for detecting AEXs) ranges from 42.8% to

101.8%. The runtime overhead due to co-location tests is about

179

3.5% (when the co-location tests were conducted 250 times

per second, triggered by benign, period system interrupts),

which grows linearly in the number of times co-location tests

are conducted. The combined runtime overhead for various

cryptographic algorithms in the SGX SSL library is 36.4%.

Contributions. We outline the contributions of the paper as

follows:

• A viable solution to an open problem. We propose a solu-

tion to the open research problem of defending against SGX

side-channel attacks on Hyper-Threading-enabled proces-

sors, and demonstrated its effectiveness.

• A novel approach to physical-core co-location tests. We

developed a new technique to conduct physical-core co-

location tests, by leveraging contrived data races to cali-

brate the communication speed between threads with the

pace of program executions.

• A turn-key solution. We developed an LLVM-based tool,

HYPERRACE, to protect enclave programs by automatically

instrumenting them with AEX and co-location detection

code.

Roadmap. The rest of the paper is organized as follows:

Sec. II provides the background of our research; Sec. III

presents an overview of HYPERRACE; Sec. IV describes our

physical-core co-location test technique; Sec. V presents the

security analysis of the co-location tests; Sec. VI elaborates

the design and implementation of HYPERRACE; Sec. VII

provides the results of performance evaluation on our proto-

type; Sec. VIII reviews the related prior research and Sec. IX

concludes the paper.

II. BACKGROUND

In this section, we describe background knowledge on cache

coherence protocols, store buffers, Intel SGX and Hyper-

Threading.

Cache and memory hierarchy. Modern processors are

equipped with various buffers and caches to improve their

performance. Relevant to our discussion are cache coherence

protocols and the store buffer.

• Cache coherence protocols. Beginning with the Pentium

processors, Intel processors use the MESI cache coherence

protocol to maintain the coherence of cached data [26].

Each cache line in the L1 data cache and the L2/L3 unified

caches is labeled as being in one of the four states defined

in Table I. When writing to a cache line labeled as Shared
or Invalid, a Read For Ownership (RFO) operation will be

performed, which broadcasts invalidation messages to other

physical cores to invalidate the copies in their caches. After

receiving acknowledgement messages from other physical

cores, the write operation is performed and the data is

written to the cache line.

• Store Buffer. The RFO operations could incur long delays

when writing to an invalid cache line. To mitigate these

delays, store buffers were introduced. The writes will be

pushed to the store buffer, and wait to be executed when

the acknowledgement messages arrive. Since the writes

are buffered, the following reads to the same address may

not see the most up-to-date value in cache. To solve this

problem, a technique called store-to-load forwarding is

applied to forward data from the store buffer to later reads.

Intel SGX. Intel Software Guard Extensions (SGX) is new

hardware feature available on recent Intel processors that

provides an shielded execution environment, called an enclave,

to software applications, which protects confidentiality and

integrity of enclave programs against privileged attackers, such

as the operating system (OS). The enclaves’ code and data

is stored in Processor Reserved Memory (PRM), a region of

the DRAM. Accesses to the memory regions belonging to

an enclave inside the PRM from any software outside of the

enclave are denied.

To switch between enclave mode and non-enclave mode,

SGX provides EENTER and EEXIT instructions to start and

terminate enclave execution. During the enclave execution,

interrupts or exceptions will cause the processor to transition

out of the enclave mode, which is called an Asynchronous

Enclave eXit (AEX). To protect the security of the enclave,

an AEX will perform a series of operations, including flushing

TLBs and saving the state of certain registers in a State

Save Area (SSA) inside the enclave memory. An ERESUME
operation resumes the enclave execution after an AEX occurs.

Intel Hyper-Threading. Hyper-Threading Technology is

Intel’s proprietary implementation of simultaneous multi-

threading (SMT), which enables a single physical processor

to execute two concurrent code streams [26]. With Hyper-

Threading support, a physical core consists of two logical

cores sharing the same execution engine and the bus interface.

Each logical core has a separated architectural state, such

as general purpose registers, control registers, local APIC

registers, etc.

Beside the shared execution engine and bus interface, the

following resources are also shared between two logical cores

of the same physical core supporting Hyper-Threading.

• Caches: the private caches (i.e., L1/L2) of a physical core

are shared between the two logical cores.

• Branch prediction units (BPU): the two logical cores share

the branch target buffer (BTB) which is a cache storing a

target address of branches.

• Translation lookaside buffers (TLB): data TLBs are shared

between two logical cores, while the instruction TLB may

be shared or duplicated depending on specific processors.

• Thermal monitors: the automatic thermal monitoring mech-

anism and the catastrophic shutdown detector are shared.

Most processors with SGX also support Hyper-Threading.

We surveyed a list of Intel processors that supports SGX and

listed the results in Table VIII (see Appendix A).

III. HYPERRACE OVERVIEW

Before diving into the design details, in this section, we

highlight the motivation of the paper, an overview of HYPER-

RACE’s design, and the threat model we consider in this paper.

180

TABLE I
MESI CACHE LINE STATES.

Cache Line State M(Modified) E(Exclusive) S(Shared) I(Invalid)

This line is valid? Yes Yes Yes No

Copies exists in other processors’ cache? No No Maybe Maybe

A read to this line Cache hit Cache hit Cache hit Goes to system bus

A write to this line Cache hit Cache hit Read for ownership Read for ownership

TABLE II
HYPER-THREADING SIDE CHANNELS.

Side Channels Shared Cleansed at AEX Hyper-Threading only

Caches Yes Not flushed No

BPUs Yes Not flushed No

Store Buffers No N/A Yes

FPUs Yes N/A Yes

TLBs Yes Flushed Yes

A. Motivation

Although Hyper-Threading improves the overall perfor-

mance of processors, it makes defenses against side-channel

attacks in SGX more challenging. The difficulty is exhibited

in the following two aspects:

Introducing new attack vectors. When the enclave program

executes on a CPU core that is shared with the malicious

program due to Hyper-Threading, a variety of side channels

can be created. In fact, most the shared resources listed in

Sec. II can be exploited to conduct side-channel attacks. For

example, prior work has demonstrated side-channel attacks on

shared L1 D-cache [20], [21], L1 I-cache [22], [23], [27],

BTBs [18], FPUs [19], and store buffers [28]. These attack

vectors still exist on SGX processors.

Table II summarizes the properties of these side channels.

Some of them can only be exploited with Hyper-Threading

enabled, such as the FPUs, store buffers, and TLBs. This

is because the FPU and store-buffer side channels are only

exploitable by concurrent execution (thus N/A in Table II),

and TLBs are flushed upon AEXs. Particularly interesting

are the store-buffer side channels. Although the two logical

cores of the same physical core have their own store buffers,

false dependency due to 4K-aliasing introduces an extra delay

to resolve read-after-write hazards between the two logical

cores [28], [29]. The rest vectors, such as BPU and caches,

can be exploited with or without Hyper-Threading. But Hyper-

Threading side channels provide unique opportunities for at-

tackers to exfiltrate information without frequently interrupting

the enclaves.

Creating challenges in SGX side-channel defenses. First, be-

cause Hyper-Threading enabled or Hyper-Threading assisted

side-channel attacks do not induce AEX to the target enclave,

these attacks are much stealthier. For instance, many of the

existing solutions to SGX side-channel attacks detect the in-

cidences of attacks by monitoring AEXs [17], [16]. However,

as shown by Wang et al. [4], Hyper-Threading enables the

attacker to flush the TLB entries of the enclave program so that

new memory accesses trigger one complete page table walk

and update the accessed flags of the page table entries. This

allows attackers to monitor updates to accessed flags without

triggering any AEX, completely defeating defenses that only

detect AEXs.

Second, Hyper-Threading invalidates some defense tech-

niques that leverage Intel’s Transactional Synchronization Ex-

tensions (TSX)—Intel’s implementation of hardware transac-

tional memory. While studies have shown that TSX can help

mitigate cache side channels by concealing SGX code inside

of hardware transactions and detecting cache line eviction

in its write-set or read-set (an artifact of most cache side-

channel attacks) [30], it does not prevent an attacker who

share the same physical core when Hyper-Threading is enabled

(see Sec. VIII). As such, Hyper-Threading imposes unique

challenges to defense mechanisms alike.

While disabling Hyper-Threading presents itself as a fea-

sible solution, disabling Hyper-Threading and proving this

artifact to the owner of the enclave program through remote

attestation is impossible. Modern micro-architectures do not

provide such a mechanism that attests the status of Hyper-

Threading. As such, enclave programs cannot simply trust the

OS kernel to disable Hyper-Threading.

B. Design Summary

To prevent Hyper-Threading side-channel leaks, we propose

to create an auxiliary enclave thread, called shadow thread,

to occupy the other logic core on the same physical core.

By taking over the entire physical core, the Hyper-Threading

enabled or assisted attacks can be completely thwarted.

Specifically, the proposed scheme relies on the OS to sched-

ule the protected thread and its shadow thread to the same

physical core at the beginning, which is then verified by the

protected thread before running its code. Because thread mi-

gration between logical cores requires context switches (which

induce AEX), the protected thread periodically checks the

occurrence of AEX at runtime (through SSA, see Sec. VI-A)

and whenever an AEX is detected, verifies its co-location with

the shadow thread again, and terminates itself once a violation

is detected.

Given the OS is untrusted, the key challenge here is how

to reliably verify the co-location of the two enclave threads

on the same physical core, in the absence of a secure clock.

Our technique is based upon a carefully designed data race

to calibrate the speed of inter-thread communication with the

pace of execution (Sec. IV).

181

C. Threat Model

Here, we outline a threat model in which an adversary

aims to extract sensitive information from an enclave pro-

gram protected by SGX through same-core side channels. We

assume the adversary has every capability an OS may have

over a hosted application (excluding those restricted by SGX),

including but not limited to:

• Terminating/restarting and suspending/resuming the en-

clave program; interrupting its execution through interrupts;

intercepting exception handling inside enclaves.

• Scheduling the enclave program to any logical cores;

manipulating kernel data structures, such as page tables.

• Altering the execution speed of the enclave program by (1)

causing cache contention, (2) altering CPU frequency, and

(3) disabling caching.

Design goals. Our design targets same-core side-channel

attacks that are conducted from the same physical core where

the enclave program runs:

• Hyper-Threading side-channel attacks from the other log-

ical core of the same physical core, by exploiting one or

more attack vectors listed in Table II.

• AEX side-channel attacks, such as exception-based attacks

(e.g., page-fault attacks [1], [2]), through manipulating the

page tables of the enclave programs, and other interrupt-

based side-channel attacks (e.g., those exploiting cache [7]

or branch prediction units [9]), by frequently interrupting

the execution of the enclave program using Inter-processor
interrupts or APIC timer interrupts.

IV. PHYSICAL-CORE CO-LOCATION TESTS

In this section, we first present a number of straw-man

solutions for physical-core co-location tests and discuss their

limitations, and then describe a novel co-location test using

contrived data races.

A. Straw-man Solutions

A simple straw-man solution to testing physical-core co-

location is to establish a covert channel between the two

enclave threads that only works when the two threads are

scheduled on the same physical core.

Timing-channel solutions. One such solution is to establish

a covert timing channel using the L1 cache that is shared by

the two threads. For instance, a simple timing channel can be

constructed by measuring the PROBE time of a specific cache

set in the L1 cache set in a PRIME-PROBE protocol [20],

or the RELOAD time of a specific cache line in a FLUSH-

RELOAD protocol [10]. One major challenge of establishing

a reliable timing channel in SGX is to construct a trustwor-

thy timing source inside SGX, as SGX version 1 does not

have rdtsc/rdtscp supports and SGX version 2 provides

rdtsc/rdtscp instructions to enclave but allows the OS

to manipulate the returned values. Although previous work

has demonstrated that software clocks can be built inside

SGX [17], [5], [4], manipulating the speed of such clocks by

tuning CPU core frequency is possible [17]. Fine-grained tim-

ing channels for measuring subtle micro-architectural events,

such as cache hits/misses, in a strong adversary model is

fragile. Besides, timing-channel solutions are also vulnerable

to man-in-the-middle attacks, which will be described shortly.

Timing-less solutions. A timing-less scheme has been briefly

mentioned by Gruss et al. [30]: First, the receiver of the covert

channel initiates a transaction using hardware transactional

memory (i.e., Intel TSX) and places several memory blocks

into the write-set of the transaction (by writing to them).

These memory blocks are carefully selected so that all of them

are mapped to the same cache set in the L1 cache. When

the sender of the covert channel wishes to transmit 1 to the

receiver, it accesses another memory blocks also mapped to the

same cache set in the L1 cache; this memory access will evict

the receiver’s cache line from the L1 cache. Because Intel TSX

is a cache-based transactional memory implementation, which

means the write-set is maintained in the L1 cache, evicting

a cache-line in the write-set from the L1 cache will abort

the transaction, thus notifying the receiver. As suggested by

Gruss et al., whether or not two threads are scheduled on the

same physical core can be tested using error rate of the covert

channel: 1.6% when they are on the same core vs. 50% when

they are not on the same core.

Man-in-the-middle attacks. As acknowledged in Gruss et
al. [30], the aforementioned timing-less solution may be

vulnerable to man-in-the-middle attacks. In such attacks, the

adversary can place another thread to co-locate with both the

sender thread and the receiver thread, and then establish covert

channels with each of them separately. On the sender side, the

adversary monitors the memory accesses of the sender using

side channels (e.g., the exact one that is used by the receiver),

and once memory accesses from the sender is detected, the

signal will be forwarded to the receiver thread by simulating

the sender on the physical core where the receiver runs. The

timing-channel solutions discussed in this section are also

vulnerable to such attacks.

Covert-channel (both timing and timing-less) based co-

location tests are vulnerable to man-in-the-middle attacks be-

cause these channels can be used by any software components

in the system, e.g., the adversary outside SGX enclaves can

mimic the sender’s behavior. Therefore, in our research, we

aim to derive a new solution to physical-core co-location

tests that do not suffer from such drawbacks—by observing

memory writes inside enclaves that cannot be performed by

the adversary. We will detail our design in the next subsection.

B. Co-Location Test via Data Race Probability

Instead of building micro-architectural covert channels be-

tween the two threads that are supposed to occupy the two

logic cores of the same physical core, which are particularly

vulnerable to man-in-the-middle attacks, we propose a novel

co-location test that verifies the two threads’ co-location status

by measuring their probability of observing data races on a

shared variable inside the enclave.

182

Fig. 1. Data races when threads are co-located/not co-located.

In this section, we first illustrate the idea using a simplified

example, and then refine the design to meet the security

requirements. A hypothesis testing scheme is then described to

explain how co-location is detected by comparing the observed

data race probability with the expected one.

An illustrating example. To demonstrate how data race

could be utilized for co-location tests, consider the following

example:

1. An integer variable, V , shared by two threads is allocated

inside the enclave.

2. Thread T0 repeatedly performs the following three opera-

tions in a loop: writing 0 to V (using a store instruction),

waiting N (e.g., N = 10) CPU cycles, and then reading V
(using a load instruction).

3. Thread T1 repeatedly writes 1 to V (using a store
instruction).

There is a clear data race between these two threads, as they

write different values to the same variable concurrently. When

these two threads are co-located on the same physical core,

thread T0 will read 1, the value written by thread T1, from

the shared variable V with a high probability (close to 100%).

In contrast, when these two threads are located on different

physical cores, thread T0 will observe value 1 with very low

probability (i.e., close to zero).

Such a drastic difference in the probability of observing

data races is caused by the location in which the data races

take place. As shown in Fig. 1, when the two threads are

co-located, data races happen in the L1 cache. Specifically,

both thread T0 and T1 update the copy of V in the L1 data

cache. However, the frequency of thread T0’s updates to the

shared variable V is much lower than that of T1, because the

additional read and N -cycle waiting in thread T0 slow down

its execution. Therefore, even though the load instruction

in thread T0 can be fulfilled by a store-to-load forwarding

from the same logical core, when the load instruction retires,

almost always the copy of V in the L1 cache is the value stored

by thread T1, invalidating the value obtained from store-to-load

forwarding [31]. As such, the load instruction in thread T0

will read value 1 from V with a very high probability.

However, when the two threads are not co-located—e.g.,
thread T0 runs on physical core C0 and thread T1 runs on

physical core C1—the data races happen in the L1 cache of

physical core C0. According to the cache coherence protocol,

after thread T0 writes to V , the corresponding cache line in

C0’s L1 cache, denoted by CL0, transitions to the Modified
state. If T0’s load instruction is executed while CL0 is still

in the same state, thread T0 will read its own value from CL0.

In order for thread T0 to read the value written by thread T1,

one necessary condition is that CL0 is invalided before the

load instruction of thread T0 starts to execute. However, this

condition is difficult to meet. When thread T1 writes to V , the

corresponding cache line in C1’s L1 cache, denoted by CL1, is

in the Invalidate state due to T0’s previous store. T1’s update

will send an invalidation message to CL0 and transition CL1
to the Modified state. However, because the time needed to

complete the cache coherence protocol is much longer than

the time interval between thread T0’s write and the following

read, CL0 is very likely still in the Modified state when the

following read is executed. Hence, thread T0 will read its own

value from variable V with a high probability.

A refined data-race design. The above example illustrates the

basic idea of our physical-core co-location tests. However, to

securely utilize data races for co-location tests under a strong

adversarial model (e.g., adjusting CPU frequency, disabling

caching), the design needs to be further refined. Specifically,

the refined design aims to satisfy the following requirements:

• Both threads, T0 and T1, observe data races on the same

shared variable, V , with high probabilities when they are

co-located.

• When T0 and T1 are not co-located, at least one of them

observes data races with low probabilities, even if the

attacker is capable of causing cache contention, adjusting

CPU frequency, or disabling caching.

To meet the first requirement, T0 and T1 must both write and

read the shared variable. In order to read the value written by

the other thread with high probabilities, the interval between

the store instruction and the load instruction must be long

enough to give the other thread a large window to overwrite
the shared variable. Moreover, when the two threads are co-

located, their execution time in one iteration must be roughly

the same and remain constant. If a thread runs much faster

than the other, it will have a low probability of observing data

races, as its load instructions are executed more frequently

than the store instructions of the slower thread. To satisfy

the second requirement, instructions that have a non-linear

slowdown when under interference (e.g., cache contention)

or execution distortion (e.g., CPU frequency change or cache

manipulation) should be included.

The code snippets of refined thread T0 and T1 are listed in

Fig. 2. Specifically, each co-location test consists of n rounds,

with k data race tests per round. What follows is the common

routine of T0 and T1:

1. Initialize the round index %rdx to n (running the test for

n rounds); and reset counter %rcx, which is used to count

the number of data races (the number of times observing

the other thread’s data).

2. Synchronize T0 and T1. Both threads write their round

index %rdx to the other thread’s sync_addr and read

183

Thread T0

1 <initialization>:
2 mov $colocation_count, %rdx
3 xor %rcx, %rcx
4 ; co-location test counter
5 <synchronization>:
6 · · · ; acquire lock 0
7 .sync0:
8 mov %rdx, (sync_addr1)
9 cmp %rdx, (sync_addr0)

10 je .sync1
11 jmp .sync0
12 .sync1:
13 mfence
14 mov $0, (sync_addr0)
15 <initialize a round>:
16 mov $begin0, %rsi
17 mov $1, %rbx
18 mfence
19 mov $addr_v, %r8
20 <co-location test>:
21 .L0:
22 <load>:
23 mov (%r8), %rax
24 <store>:
25 mov %rsi, (%r8)
26 <update counter>:
27 mov $0, %r10
28 mov $0, %r11
29 cmp $end0, %rax
30 ; a data race happens?

31 cmovl %rbx, %r10
32 sub %rax, %r9
33 cmp $1, %r9
34 ; continuous number?
35 cmova %r11, %r10
36 add %r10, %rcx
37 shl $b_count, %rbx
38 ; bit length of $count
39 mov %rax, %r9
40 ; record the last number
41 <padding instructions 0>:
42 nop
43 nop
44

.

.

.
45 nop
46 mov (%r8), %rax
47 mov (%r8), %rax
48

.

.

.
49 mov (%r8), %rax
50 dec %rsi
51 cmp $end0, %rsi
52 jne .L0
53 ; finish 1 co-location test
54 <all rounds finished?>:
55 · · · ; release lock 1
56 dec %rdx
57 cmp $0, %rdx
58 jne .sync0

Thread T1

1 <initialization>:
2 mov $colocation_count, %rdx
3 xor %rcx, %rcx
4 ; co-location test counter
5 <synchronization>:
6 · · · ; release lock 0
7 .sync2:
8 mov %rdx, (sync_addr0)
9 cmp %rdx, (sync_addr1)

10 je .sync3
11 jmp .sync2
12 .sync3:
13 mfence
14 mov $0, (sync_addr1)
15 <initialize a round>:
16 mov $begin1, %rsi
17 mov $1, %rbx
18 mfence
19 mov $addr_v, %r8
20 <co-location test>:
21 .L2:
22 <load>:
23 mov (%r8), %rax
24 <update counter>:
25 mov $0, %r10
26 mov $0, %r11
27 cmp $end0, %rax
28 ; a data race happens?
29 cmovg %rbx, %r10
30 sub %rax, %r9

31 cmp $1, %r9
32 ; continuous number?
33 cmova %r11, %r10
34 add %r10, %rcx
35 shl $b_count, %rbx
36 ; bit length of $count
37 mov %rax, %r9
38 ; record the last number
39 <store>:
40 mov %rsi, (%r8)
41 <padding instructions 1>:
42 mov (%r8), %rax
43 lfence
44 mov (%r8), %rax
45 lfence
46 mov (%r8), %rax
47 lfence
48 mov (%r8), %rax
49 lfence
50 mov (%r8), %rax
51 lfence
52 dec %rsi
53 cmp $end1, %rsi
54 jne .L2
55 ; finish 1 co-location test
56 <all rounds finished?>:
57 · · · ; acquire lock 1
58 dec %rdx
59 cmp $0, %rdx
60 jne .sync2

Fig. 2. Co-location detection code.

from each others’ sync_addr. If the values match (i.e.,
they are in the same round), T0 and T1 begin the current

round of co-location test.

3. At the beginning of each round, set the test index %rsi
to b0 + k for T0 and to b1 + k for T1. Therefore, T0 will

write b0+k, b0+k−1, b0+k−2, · · · , b0+1 to the shared

variable; T1 will write b1 + k, b1 + k− 1, b1 + k− 2, · · · ,
b1+1. [b0, b0+k] does not overlap with [b1, b1+k] so either

thread, when writes its %rsi to V and reads from it, knows

whether it receives the input from the other thread. After

that, initialize the address of shared variable V in %r8.

4. For T0, store the content of %rsi to V , determine whether

a data race happens, and update %rcx if so. For T1,

determine whether a data race happens, update %rcx if

so, and then store %rsi to V . A data race is counted if

and only if contiguous values written by the other thread

are read from V , which indicates that the two threads run

at the same pace.

5. Record the data race in a counter using the conditional

move (i.e., CMOV) instruction. This avoids fluctuations in

the execution time due to conditional branches.

6. Execute the padding instructions to (1) make the execution

time of T0 and T1 roughly the same; (2) increase the inter-

val between the store instruction and the load instruction;

(3) create non-linear distortion in the execution time when

being manipulated (see discussions in Sec. V).

7. Decrease %rsi by 1 and check whether it hits b0 (for T0)

or b1 (for T1), which indicates the end of the current round.

If so, go to step 8. Otherwise, go to step 4.

8. Decrease %rdx by 1 and check whether it becomes 0. If

so, all rounds of tests finish; Otherwise, go to step 2.

The time for one data race test for thread T0 and T1 is

t

LD ST

LD ST

LD ST

LD ST

T0

T1

Fig. 3. The basic idea of the data race design. Monitoring the memory
operations of the two threads on V . LD: load; ST: store.

roughly the same when both threads are running on the same

physical core. As shown in Fig. 3, when the two threads are

co-located, since the interval from load to store (line 22

to 24 for T0, line 22 to 39 for T1) is much shorter than the

interval between store and load (line 24 to 52 then jump

to 21 for T0, line 39 to 54, including the serializing instruction

lfence, then jump to 21 for T1), there is a high probability

that the store operation from the other thread will fall into

the interval between the store and load. As a result, each

thread becomes much more likely to see the other’s data than

its own. In contrast, when the two threads are not co-located,

the communication time between the two physical cores is

longer than the interval between store and load: that is,

even when one thread’s store is performed in the other’s

store to load interval, the data of the store will not

be seen by the other due to the delay caused by the cache

coherence protocol. Therefore, data races will not happen.

Testing co-location via statistical hypothesis testing. To

determine whether two threads are co-located on the same

physical core, we perform the following hypothesis test.

During each round of a co-location test, k samples are

collected by each thread. We consider the k samples as k− 1
unit tests; each unit test consists of two consecutive samples:

if both samples observe data races (and the observed counter

values are also consecutive), the unit test passes; otherwise

it fails. We take the i-th (i = 1, 2, . . . , k − 1) unit test from

each round (of the n rounds), and then consider this n unit

184

tests as n independent Bernoulli trials. Then, we have k − 1
groups of Bernoulli trials. We will conduct k − 1 hypothesis

tests for each of the two threads as follows, and consider the

co-location test as passed if any of the k − 1 hypothesis tests

accepts its null hypothesis:

We denote the j-th unit test as a binary random variable Xj ,

where j = 1, 2, . . . , n; Xj = 1 indicates the unit test passes,

and Xj = 0 otherwise. We assume when the two threads

are co-located, the probability of each unit test passing is p.

Therefore, when they are co-located, P (Xj = 1) = p. We

denote the actual ratio of passed unit tests in the n tests as p̂.

The null and alternative hypotheses are as follows:

H0: p̂ ≥ p; the two threads are co-located.

H1: p̂ < p; the two threads are not co-located.

Because Xj is a test during round j and threads T0 and

T1 are synchronized before each round, we can consider

X1, X2, · · · , Xn independent random variables. Therefore, the

sum of n random variables, i.e., X =
∑n

j=1 Xj , follows a

Binomial distribution with parameters n and p. The mean of

the Binomial distribution is E(X) = np and the variance is

D(X) = np(1−p). When n is large, the distribution of X can

be approximated by a normal distribution N(np, np(1 − p)).
Let the significance level be α. Then

Pr

[
X − np√
np(1− p)

< −uα

]
= α.

We will reject H0 and decide that the two threads are not

co-located, if

X < np− uα

√
np(1− p).

In our prototype implementation, we parameterized n, p,

and α. For example, when n = 256 and α = 0.01, uα = 2.33.

From the measurement results given in Table V (Sec. V), the

probabilities for T0 and T1 to see data races with co-location

are p0 = 0.969 and p1 = 0.968, respectively. So we have for

both T0 and T1

Pr [X < 242] = 0.01.

In other words, in the hypothesis test, we reject the null

hypothesis if less than 242 unit tests (out of the 256 tests)

pass in T0 (or T1).

Here the probability of a type I error (i.e., falsely rejecting

the null hypothesis) is about 1%. The probability of a type

II error is the probability of falsely accepting H0 when

the alternative hypothesis H1 is true. For example, when

X follows a normal distribution of N(np, np(1 − p)) and

p = 0.80, the probability of a type II error in T0 and T1

will be (let Z = X−np√
np(1−p)

∼ N(0, 1)):

Pr
[
X ≥ 242

∣∣∣ X ∼ N(np, np(1− p))
]

= Pr

[
Z ≥ 242− 256 · 0.80√

256 · 0.80 · (1− 0.80)

∣∣∣ Z ∼ N(0, 1)

]
< 0.01%.

Practical considerations. The above calculation only provides

us with theoretic estimates of the type I and type II errors

T0

I0load

I0store

T1

I1load

I1store

Fig. 4. The model of thread T0 and thread T1. •: load; �: store.

of the hypothesis tests. In practice, because system events

cannot be truly random and independent, approximation has to

be made. Particularly, the two threads are only synchronized

between rounds, and the k samples in each round are collected

without re-synchronization. Therefore, although samples in

different rounds can be considered independent, the k samples

within the same round may be dependent. Second, within

each round, a truly random variable X requires T0 and T1

to start to monitor data races uniformly at random, which is

difficult to achieve in such fine-grained data race measure-

ments. We approximate the true randomness using the pseudo-

randomness introduced in the micro-architecture events (e.g.,
data updates in the L1 cache reflected in memory reads) during

the synchronization. To account for the dependence between

unit tests in the same round and the lack of true randomness

of each unit test, we select the i-th unit test from each round

to form the i-th n-sample hypothesis test, and consider the

co-location test as passed if any of the k − 1 hypothesis tests

accepts its null hypothesis. We will empirically evaluate how

this design choice impacts the type I errors and type II errors

in Sec. V-C.

V. SECURITY ANALYSIS OF CO-LOCATION TESTS

In this section, we provide an analysis on the security of the

co-location tests. To do so, we first establish the relationship

between the execution time of the communicating threads and

the data race probability. We next empirically estimate the

execution time of the threads under a variety of execution

conditions that the adversary may create (e.g., Priming caches,

disabling caching, adjusting CPU frequencies, etc.) and then

apply the measurement results to analytically proof that, under

all attacker-created conditions we have considered, the data

race probability cannot reach the same level as that when the

two threads are co-located. Finally, we empirically performed

attacks against our proposed scheme and demonstrated that

none of the attacks could pass the co-location tests.

A. Security Model

To establish the relationship between the execution time of

the communicating threads and the probability of data races,

we first construct execution models of thread T0 and thread T1

(see their code snippets in Fig. 2). Particularly, we abstract the

execution of T0 and T1 as sequences of alternating load and

store operations on the shared variable V . After each load or

store operation, some delays are introduced by the padding

instructions. We use Iiw, where w ∈ {store,load} and

i ∈ {0, 1} to denote a code segment between two instructions

for thread Ti: when w is load, the segment is from load
to store (line 22 to 24 for T0, line 22 to 39 for T1; see

185

Fig. 2); when w is store, the segment begins with the

store instruction and ends with the first load encountered

(line 24 to 52 then jump to 21 for T0, line 39 to 54, then jump

to 21 for T1).

The execution time of these code segments depends on

their instructions and the memory hierarchy v on which the

data access (to variable V) operation w is performed (i.e.,
memory access latency). Therefore, the execution time of the

code segment Iiw is denoted by T (Iiw, v), where i ∈ {0, 1}
and v ∈ {L1,L2,LLC,Memory}. We further denote T i

w,v =
T (Iiw, v) for short. As such, the period of thread Ti’s one

iteration of the store and load sequence (line 22 to 52, then

jump to 21 for T0, line 22 to 54, jump to 21 for T1) is

Ri
v = T i

load,v + T i
store,v , i.e., the time between two adjacent

load instructions’ retirements of thread Ti when the data

accesses take place in memory hierarchy v.

We use variable Gv,u, where u ∈ {c,nc}, to denote the

communication time, i.e., the time that the updated state of V
appears in the other thread’s memory hierarchy v, after one

thread modifies the shared variable V , if two threads are co-

located (u = c) or not co-located (u = nc).

Consider the data race happens in memory hierarchy v. If

T i
store,v < Gv,u, i ∈ {0, 1}, during the time thread Ti⊕1’s

updated state of V is propagated to thread Ti’s memory

hierarchy v, Ti has updated V and fetched data from v at

least once. As a result, data races will not happen. In contrast,

if T i
store,v ≥ Gv,u, a data race will happen if the data value of

V is propagated from thread Ti⊕1 to Ti’s memory hierarchy

v during T i
store,v .

Further, if T i
store,v ≥ Ri⊕1

v , at least one store from thread

Ti⊕1 will appear in v during T i
store,v . Then data races will

be observed by thread Ti. If T i
store,v < Ri⊕1

v , the data

race probability of thread Ti will be T i
store,v/Ri⊕1

v , since

the faster the store-load operations of Ti compared with the

other thread’s iteration, the less likely Ti will see the other’s

data. Hence, we have the data race probability of thread Ti

(i ∈ {0, 1}):

pi

{
= 0 if T i

store,v < Gv,u
≈ min(T i

store,v/Ri⊕1
v , 1) if T i

store,v ≥ Gv,u
. (1)

It is worth noting that when the two threads run at drastically

different paces, the faster thread will have a low probability

to observe data races, as its load instructions are executed

more frequently than the store instructions of the slower

thread. Therefore, we implicitly assume that R0
v is close to

R1
v . This implicit requirement has been encoded in our design

of the unit tests: the way we count data race requires two

consecutive data races to read consecutive counter values from

the other thread.

Necessary conditions to pass the co-location tests: To

summarize, in order to pass the co-location tests, an adversary

would have to force the two threads to execute in manners

that satisfy the following necessary conditions: (1) They run

at similar paces. That is, R0
v/R1

v is close to 1. (2) The

TABLE III
TIME INTERVALS (IN CYCLES) OF T0 AND T1 .

T0 T1

T 0
store,v R0

v T 1
store,v R1

v

Caching Enabled 95.90 96.30 88.70 98.69
Caching Disabled 1.32e+5 1.35e+5 1.34e+4 2.57e+4

communication speed must be faster than the execution speed

of the threads. That is, T i
store,v ≥ Gv,u, where i ∈ {0, 1}. (3)

T i
store,v/Ri⊕1

v must be close to 1, where i ∈ {0, 1}, to ensure

high probabilities of observing data races.

B. Security Analysis

In this section, we systematically analyze the security of

the co-location tests by investigating empirically whether the

above necessary conditions can be met when the two threads

are not co-located. Our empirical analysis is primarily based

on a Dell Optiplex 7040 machine equipped with a Core i7-

6700 processor. We also conducted experiments on machines

with a few other processors, such as E3-1280 V5, i7-7700HQ,

i5-6200U (see Table V).

We consider the scenarios in which the two threads T0 and

T1 are placed on different CPU cores by the adversary and the

data races are forced to take place on the memory hierarchy

v, where v = {L1/L2, LLC,memory}. We discuss these

scenarios respectively.

1) L1/L2 Cache Data Races: We first consider the cases

where v = {L1, L2}. This may happen when the adversary

simply schedule T0 and T1 on two cores without cache inter-

vention (e.g., cache Priming or caching disabling). However,

the adversary is capable of altering the CPU frequency on

which T0 or T1 runs to manipulate T i
store,v and Gv,nc.

Latency of cache accesses. We use the pointer-chasing tech-

nique [24], [13] to measure cache access latencies. Memory

load operations are chained as a linked list so that the address

of the next pointer depends on the data of previous one.

Thus the memory accesses are completely serialized. In each

measurement, we access the same number of cache-line sized

and aligned memory blocks as the number of ways of the

cache at the specific cache level, so that every memory access

induces cache hits on the target cache level and cache misses

on all lower-level caches. According to the result averaged

over 10,000,000 measurements, the average value of cache

access latencies for the L1/L2/L3 caches were 4, 10 and 40

cycles, respectively.

Cross-core communication time. We developed a test pro-

gram with two threads: Thread Ta repeatedly writes to a

shared variable in an infinite loop, without any additional

delays between the two consecutive writes. Thread Tb runs

on a different physical core, which after writing to the shared

variable executes a few dummy instructions to inject a delay,

and then reads from the variable to check for data race. The

execution time of the dummy instructions can be used to

measure the communication time: When dummy instructions

are short, Tb will observe no data race; but when the execution

time of the dummy instructions increases to certain threshold,

186

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 100 200 300

(in

st
an

ce
s)

time (cycles)

No Data Race
Data Race

Fig. 5. Demonstration of the cross-core communication time. There is no
data race if the dummy instructions take time shorter than 190 cycles.

Tb will start to observe data race. We draw the histogram of

10,000,000 measurements (Fig. 5). The solid bars represent

measurements in which data races were not observed (i.e.,
Tb reads its own data) and the shaded bars represent mea-

surements where data races were observed (i.e., Tb reads Ta’s

data). From the experiment, we see when the execution time

of the dummy functions is less than 190 cycles, data races

were hardly observed. Therefore, we believe the latency of

cross-core communication is about 190 cycles.

Effects of frequency changes. In our experiments, we man-

aged the CPU frequency with the support of Hardware-

Controlled Performance states (HWP). Specifically we first

enabled HWP by the writing to the IA32_PM_ENABLE
MSR, then configured the frequency range by the writing to

the IA32_PM_REQUEST MSR. To understand the relation

between instructions latencies and the CPU frequency, we

evaluated the latency of L1/L2/L3 cache accesses, the latency

of executing nop,load, and store instructions, respectively,

and the latency of executing the store; lfence instruction

sequence, under different CPU frequencies. We also measured

the cross-core communication speed under these frequencies.

The measurements were conducted in a tight loop, averaged

over 10,000,000 tests. The results are plotted in Fig. 6. The

results suggest that when the CPU frequency changes from

3.40 Ghz to 800 Mhz the instruction execution speed (4.3×),

cache access latencies (4.25×–4.44×), and cross-core com-

munication time (4.47×) are affected in the similar order of

magnitude.

Discussion. For v ∈ {L1,L2}, we have Gv,c ≤ 12 cycles

(the latency for a L2 access) and Gv,nc > 190 cycles (the

latency of cross-core communication). According to Table III,

T 0
store,v = 95.90 and T 1

store,v = 88.70. Therefore, Gv,c <
T i
store,v < Gv,nc, i ∈ {0, 1}. As such, data races will happen

only if the two threads are co-located. Altering the CPU

frequency will not change the analysis. According to Fig. 6,

frequency changes have similar effects on T i
store,v and Gv,nc.

That is, when the CPU frequency is reduced, both T i
store,v

and Gv,nc will increase, with similar derivatives. As a result,

when the adversary places T0 and T1 on different cores, and

reduces the frequency of these two cores, their communication

 1

 10

 100

 1000

800 1000 1400 1800 2200 2600 3000 3400

tim
e

(c
yc

le
s)

CPU frequency (MHz)

L1 latency

17.75 13.5
9.5 7.5 6.25 5.5 4.5 4.0

L2 latency

42.56 35.4
24.1 18.78 15.3 13.1 11.3 10.0

L3 latency

169.7 135.5
94.1 74.8 60.8 52.3 45.1 39.9

load;lfence latency

63.1 50.5
36.0 28.0 22.9 19.4 16.8 14.8

load/nop/store latency

4.3 3.4 2.5 1.9 1.6 1.3 1.2 1.0

cross-core comm. latency850 699
497 387 316 266 232 190

Fig. 6. The effects of frequency changing on execution speed, cache latencies,
and cross-core communication time.

speed will be slowed down at the same pace as the slowdown

of the execution.

2) LLC Data Races: We next consider the cases where v =
{LLC}. This may happen when the adversary PRIMEs the

private caches used by T0 and T1 (from co-located logical

cores) to evict the shared variable V to the LLC.

Effects of cache PRIMEs. The data races can occur on the

shared LLC when the copies of V in the private L1 and

L2 caches are invalidated, which can only be achieved by

having an attacking thread frequently PRIMEing the shared

L1/L2 caches from the co-located logical core. To counter

such attacks, thread T0 and T1 both include in their padding

instructions redundant load instructions (i.e., line 46 to 49 of

T0 and line 42 to 50 of T1 in Fig. 2). These load instructions

precede the load instruction that measures data races, thus

they effectively pre-load V into the L1/L2 caches to prevent the

adversary’s PRIMEs of related cache lines. This mechanism not

only defends against attempts to PRIME local L1/L2 caches,

but TLBs and paging structure caches.

Discussion. According to our measurement study, the time

needed to PRIME one cache set in L1 and one cache set

in L2 (to ensure that V is not in L1 and L2 cache) is at

least 10 × (wL2 − 1) + 40 × 1 cycles (wL2 is the number

of cache lines in one L2 cache set), which is significantly

larger than the interval between the pre-load instructions and

the actual load instruction (i.e., 1 cycle). Moreover, because

CPU frequency changes are effective on both logical cores of

the same physical core, altering CPU frequency will not help

the adversary. Therefore, we conclude that data race cannot

happen on LLC.

3) Data Races in Main Memory: We next consider the

cases where v = {Memory}. This may happen when the

adversary (1) PRIMEs the caches, (2) invalidates the caches,

or (3) disables the caching.

Latency of cache invalidation instructions. According to

Intel software developers manual [26, Chapter 8.7.13.1], the

wbinvd instruction executed on one logical core can in-

validate the cached data of the other logical core of the

same physical core. Directly measuring the latency of cache

187

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1.0e+06 1.5e+06 2.0e+06

(in

st
an

ce
s)

time (cycles)

Fig. 7. The histogram of wbinvd execution time over 1,000,000 measure-
ments.

TABLE IV
INSTRUCTION LATENCIES (IN CYCLES) CAUSED BY DISABLING CACHING.

Instructions Caching enabled Caching disabled Slowdown

nop 1.00 901 901×
load 1.01 1266 1253×
store 1.01 978 968×

load; lfence 14.82 2265 153×

invalidation using the wbinvd instruction is difficult. Instead,

we measure the execution time of wbinvd to approximate

the latency of cache invalidation. This is reasonable because

wbinvd is a serialized instruction. Specifically, we conducted

the following experiments: We run wbinvd in a tight loop for

1,000,000 times and measure the execution time of each loop,

which is shown in Fig. 7. We observe that in some cases the

latency is as high as 2× 106 cycles, which typically happens

early in the experiments, while most of the times the latency

is only 1× 106 cycles. We believe this is because dirty cache

lines need to be written back to the memory in the first few

tests, but later tests usually encounter already-empty caches.

Effects of disabling caching. The attacker can disable caching

on a logical core by setting the CD bit of control registers.

According to Intel Software Developer’s Manual [26, Chapter

8.7.13.1], “the CD flags for the two logical processors are

ORed together, such that when any logical processor sets its

CD flag, the entire cache is nominally disabled.” This allows

the adversary to force an enclave thread to enter the no-fill

caching mode. According to Intel’s manual [26, Sec. 11.5.3

and Table 11-5], after setting the CD bit, the caches need to

be flushed with wbinvd instruction to insure system memory

coherency. Otherwise, cache hits on reads will still occur and

data will be read from valid cache lines. The adversary can also

disable caching of the entire PRM by setting the PRMRR [32,

Chapter 6.11.1], as “all enclave accesses to the PRMRR region

always use the memory type specified by the PRMRR, unless

the CR0.CD bit on one of the logical processors on the

core running the enclave is set.” It is worth noting that the

PRMRR_BASE and PRMRR_MASK MSRs are set in an early

booting stage, and cannot be updated after the system boots.

We measured the latency of the nop, load, store instruc-

tions, and the load;lfence instruction sequence, respec-

tively, in tight loops (averaged over 10,000,000 measurements)

with the caching enabled and disabled. The results are shown

in Table IV. The slowdowns were calculated by comparing

the latency with caching disabled and enabled. It can be seen

that the slowdowns of nop, load, and store instructions

are around 1000×. But the slowdown of load;lfence
instruction sequence is only two orders of magnitude. This

result leads to the non-linear distortion of T1 when caching

are disabled (see Fig. 2), which is also shown in Table III:

T 0
store,v and T 1

store,v are on the same order of magnitude

when caching is enabled but become drastically different when

caching is disabled (i.e., 1.32e+5 vs. 1.34e+4).

Discussion. A prerequisite of observing data races in the

memory is that the load operations miss L1/L2/LLC caches.

This may be achieved using one of the following mechanisms:

• Evicting the shared variable to memory on-the-fly. The

adversary could leverage two approaches to evict the

shared variable to memory: (1) Flushing cache content

using the wbinvd instruction. However, as the latency of

the instruction (on the order of 106 cycles) is too large

(see Fig. 7), it cannot effectively evict the shared variable

to memory. In fact, during the execution of the wbinvd
instruction, caches can still be filled normally. We have

empirically confirmed that co-location tests that happen

during the execution of the wbinvd instruction are not

affected. (2) Evicting the cache content using PRIME-

PROBE techniques. However, according to our measure-

ment study, the time needed to PRIME one cache set in

LLC is at least 40 × wLLC cycles (wLLC is the number

of cache lines in one LLC slides), which is significantly

larger than the interval between the pre-load instructions

and the actual load instruction (i.e., 1 cycle). Even if

the adversary could distribute the task of cache PRIMEs

to multiple threads running on different CPU cores, which

is by itself challenging due to cache conflicts among these

threads, the gap of speed should be huge enough to prevent

such attacks. We will empirically verify this artifact in

Sec. V-C.

• Disabling caching. We have examined several approaches

to disable caching: First, the adversary can disable caching

by editing PRMRR, which will be effective after system

reboots. Second, the adversary can interrupt the co-location

tests before the load instructions and flush the cache

content using the wbinvd instruction or PRIME-PROBE

operations (though interruption of the co-location tests will

be detected and thus restart the co-location tests). Third,

the adversary can disable the caching of the two physical

cores on which T0 and T1 executes by setting the CD bits

of the control registers. However, none of this methods

can pass the co-location tests. This is because we use

load instructions as paddings in thread T0, and use load
followed by lfence instructions as paddings in thread T1.

If caching is disabled, the slowdown of “load; lfence”

is much smaller than the other instructions, since the former

188

already serializes the load operations (see Table IV). As

a result, the relative speed of the two threads changes

significantly (see Table III). Particularly, as R0
v/R1

v is no

longer close to 1, the co-location tests will not pass.

• Altering CPU frequency when caching is disabled. We

further consider the cases of changing CPU frequency

after disabling caching by setting the CD bits. Suppose

the frequency change slows down thread T0 and T1 by

a factor of c0 and c1, respectively, which are constant.

Then T 0
store,v = c0 · 1.32 × 105, R0

v = c0 · 1.35 × 105,

T 1
store,v = c1 ·1.34×104, R1

v = c1 ·2.57×104, according

to Table III. Then, based upon Equa. (1), the data race

probabilities of T0 and T1 are p̂0 = min(c0·1.32×105

c1·2.57×104 , 1)

and p̂1 = min(c1·1.34×104

c0·1.35×105 , 1) respectively. Since p̂0 · p̂1 ≤
c0·1.32×105

c1·2.57×104 · c1·1.34×104

c0·1.35×105 ≈ 0.51, we can see that the

probability for a thread to observe the data race will not

exceed
√
0.51 ≈ 71.4%, which has a near zero probability

to pass our co-location test.

• Nonlinear CPU frequency changes. The only remaining

possibility for the adversary to fool the co-location test is

to change the CPU frequency nonlinearly so that T 0
store,v ,

T 0
load,v , T 1

store,v , T 1
load,v change independently. However,

the CPU frequency transition latency we could achieve on

our testbed is between 20μs and 70μs (measured using the

method proposed by Mazouz et al. [33]), which is on the

same order of magnitude as R1
v when caching is disabled

(and thus much larger than R1
v when caching is enabled),

making it very difficult, if not impossible, to introduce

desired nonlinear frequency change during the co-location

tests.

In summary, when the data races take place in the memory

through any of the methods we discussed above, the attacker

cannot achieve high probability of observing data races in both

T0 and T1. The hypothesis tests will fail in all cases.

C. Empirical Security Evaluation

We empirically evaluated the accuracy of the co-location

tests. As the primary goal of the co-location test is to raise

alarms when the two threads are not co-located, we define

a false positive as a false alarm (i.e., the co-location test

fails) when the two threads are indeed scheduled on the same

physical core, and a false negative as a missed detection (i.e.,
the co-location test passes) of the threads’ separation.

False positive rates. A False positive of the co-location tests

is approximately the combined type I error of two hypothesis

tests (from T0 and T1, respectively). We run the same code

shown in Fig. 2 on four different processors (i.e., i7-6700,

E3-1280 v5, i7-7700HQ, and i5-6200U) without modification.

The empirical probabilities of passing unit tests by T0 and

T1 on these processors are listed in Table V. These values

are estimated by conducting 25, 600, 000 unit tests. Then with

parameter n = 256 and the corresponding values of p0 and

p1, we run co-location tests with α = 0.01, α = 0.001,

α = 0.0001, respectively. The false positive rates are reported

in Table V. Although the empirical values are close to the

TABLE V
EVALUATION OF FALSE POSITIVE RATES.

false positive rates (α =)
CPU p0 p1 0.01 0.001 1e−4

i7-6700 0.969 0.968 0.005 5e−4 4e−5
E3-1280 V5 0.963 0.948 0.004 4e−4 5e−5
i7-7700HQ 0.965 0.950 0.005 5e−4 2e−4
i5-6200U 0.968 0.967 0.006 0.001 3e−4

theoretical values of α, there are cases where the empirical

values are 3× the theoretical ones (i.e., on i5-6200U with

α = 0.0001). This is probably because of the lack of true ran-

domness and independence in our statistical tests (explained

in Sec. IV-B). However, these values are on the same order of

magnitude. We believe it is reasonable to select a desired α
value to approximate false positives in practice.

False negative rates. A false negative of the co-location test

is approximately the type II error of the hypothesis test. We

particularly evaluated the following four scenarios:

1. The adversary simply places the two threads on two

physical cores without interfering with their execution.

2. The adversary simply places the two threads on two

physical cores, and further reduces the frequency of the

two physical cores to 800 Mhz.

3. The adversary simply places the two threads on two

physical cores, and further disabling caching on the cores

on which the two threads run, by setting the CD flag.

4. The adversary simply places the two threads on two

physical cores, and creates 6 threads that concurrently

PRIME the same LLC cache set to which the shared variable

V is mapped.

We run 100, 000 co-location tests for every scenarios. The

tests were conducted on the i7-6700 processor, with parameter

n = 256, p0 = 0.969, p1 = 0.968, α = 0.0001. Results

are shown in Table VI. Column 2 and 3 of the table show

p̂0 and p̂1, the probability of passing unit tests under the

considered scenarios, respectively. We can see that in all cases,

the probabilities of observing data races from T0 and T1 are

very low (e.g.., 0.03% to 2.2%). In all cases, the co-location

tests fail, which suggests we have successfully detected that

the two threads are not co-located. We only show results with

α = 0.0001 because larger α values (e.g., 0.01 and 0.001) will

lead to even lower false negative rates. In fact, with the data

collected in our experiments, we could not achieve any false

negatives even with a much smaller α value (e.g., 1e−100).
This result suggests it is reasonable to select a rather small

α value to reduce false positives while preserving security

guarantees. We leave the decision to the user of HYPERRACE.

VI. PROTECTING ENCLAVE PROGRAMS WITH HYPERRACE

In this section, we introduce the overall design and imple-

mentation of HYPERRACE that leverages the physical core

co-location test presented in the previous sections.

189

TABLE VI
EVALUATION OF FALSE NEGATIVE RATES.

Scenario p̂0 p̂1
false negative rates

(α = 1e−4)
1 0.0004 0.0007 0.000
2 0.0003 0.0008 0.000
3 0.0153 0.0220 0.000
4 0.0013 0.0026 0.000

A. Safeguarding Enclave Programs

HYPERRACE is a compiler-assisted tool that compiles a pro-

gram from source code into a binary that runs inside enclaves

and protects itself from Hyper-Threading side-channel attacks

(as well as other same-core side-channel attacks).

At the high-level, HYPERRACE first inserts instructions to

create a new thread (i.e., the shadow thread) at runtime, which

shares the same enclave with the original enclave code (dubbed

the protected thread). If the enclave program itself is already

multi-threaded, one shadow thread needs to be created for each

protected thread.

HYPERRACE then statically instruments the protected

thread to insert two types of detection subroutines at proper

program locations, so the subroutines will be triggered period-

ically and frequently at runtime. The first type of subroutines

is designed to let the enclave program detect AEXs that take

place during its execution. The second type of subroutines

performs the aforementioned physical-core co-location tests.

The shadow thread is essentially a loop that spend most of its

time waiting to perform the co-location test.

At runtime, the co-location test is executed first when the

protected thread and the shadow thread enter the enclave,

so as to ensure the OS indeed has scheduled the shadow

thread to occupy the same physical core. Once the test passes,

while the shadow thread runs in a busy loop, the protected

thread continues the execution and frequently checks whether

an AEX has happened. Once an AEX has been detected,

which may be caused by either a malicious preemption or

a regular timer interrupt, the protected thread will instruct

the shadow thread to conduct another co-location test and,

if passes, continue execution.

AEX detection. HYPERRACE adopts the technique introduced

by Gruss et al. [30] to detect AEX at runtime, through

monitoring the State Save Area (SSA) of each thread in the

enclave. Specifically, each thread sets up a marker in its SSA,

for example, writing 0 to the address within SSA that is

reserved for the instruction pointer register RIP. Whenever an

AEX occurs, the current value of RIP overrides the marker,

which will be detected by inspecting the marker periodically.

When an AEX is detected, the markers will be reset to value

0. A co-location test will be performed to check co-location of

the two threads, because AEX may indicate a privilege-level

switch—an opportunity for the OS kernel to reschedule one

thread to a different logical core. By the end of the co-location

test, AEX detection will be performed again to make sure no

AEX happened during the test.

Co-location test. To check the co-location status, HYPER-

RACE conducts the physical-core co-location test described

in Sec. IV between two threads. Since the shared variable in

the test is now in the enclave memory, the adversary has no

means to inspect or modify its value. Once the co-location

status has been verified, subsequent co-location tests are only

needed when an AEX is detected.

B. Implementation of HYPERRACE

HYPERRACE is implemented by extending the LLVM

framework. Specifically, the enclave code is complied using

Clang [34], a front-end of LLVM [35] that translates C code

into LLVM intermediate representation (IR). We developed

an LLVM IR optimization pass that inserts the AEX detection

code (including a conditional jump to the co-location test rou-

tine if an AEX is detected) into every basic block. Further, we

insert one additional AEX detection code every q instructions

within a basic block, where q is a parameter we could tune.

Checking AEX in every basic block guarantees that secret-

dependent control flows are not leaked due to side-channel

attacks; adding additional checks prevents data-flow leakage.

We will evaluate the effects of tuning q in Sec. VII.

The shadow thread is created outside the enclave and system

calls are made to set the CPU affinity of the protected thread

and the shadow thread prior to entering the enclave. We use

spin locks to synchronize the co-location test routines for

the protected thread and the shadow thread. Specifically, the

shadow thread waits at the spin lock until the protected thread

requests a co-location test. If the co-location test fails, the

enclave program reacts according to a pre-defined policy, e.g.,
retries r times and, if all fail, terminates.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance overhead of

HYPERRACE. All experiments were conducted on a Dell

Optiplex 7040 machine with an Intel Core i7-6700 processor

and 32GB memory. The processor has four physical cores (8

logical cores). The parameter α of the co-location tests was

set to 1e−6; p0, p1, and n were the same as in Sec. V.

A. nbench

We ported nbench [36], a lightweight benchmark application

for CPU and memory performance testing, to run inside

SGX and applied HYPERRACE to defend it against Hyper-

Threading side-channel attacks.

Contention due to Hyper-Threading itself. Before evaluating

the performance overhead of HYPERRACE, we measured the

execution slowdown of nbench due to contention from the

co-located logical core. This slowdown is not regarded as

an overhead of HYPERRACE, because the performance of

an enclave program is expected to be affected by resource

contention from other programs; a co-located thread running

a completely unrelated program is normal.

We set up two experiments: In the first experiment, we

run nbench applications with a shadow thread (busy looping)

executing on a co-located logical core; in the other experiment,

190

 0

 0.2

 0.4

 0.6

 0.8

 1

 n

um
eri

c s
ort

 s
trin

g s
ort

bit
eld

 f

p e
mula

tio
n

fou
rie

r

as
sig

nm
en

t

 i
de

a

 hu

man

 n
eu

ral
 ne

t

lu
de

co
mpo

siti
on

N
or

m
al

iz
ed

 #
 o

f i
te

ra
tio

ns
 p

er
 s

ec
on

d
0.944 0.952

0.897 0.900

0.752
0.839

0.981
0.874

0.671
0.748

Fig. 8. Normalized number of iterations of nbench applications when running
with a busy looping program on the co-located logical core.

we run nbench with the co-located logical core unused. In

both cases, the nbench applications were complied without
HYPERRACE instrumentation. In Fig. 8, we show the nor-

malized number of iterations per second for each benchmark

application when a shadow thread causes resource contention;

the normalization was performed by dividing the number

of iterations per second when the benchmark occupies the

physical core by itself.

As shown in Fig. 8, the normalized number of iterations

ranges from 67% to 98%. For instance, the benchmark

numeric sort runs 1544.1 iterations per second with a

shadow thread while 1635.2 iterations per second without it,

which leads to a normalized value of 1544.1/1635.2 = 0.944.

The following evaluations do not include the performance

degradation due to the Hyper-Threading contention.

Overhead due to frequent AEX detection. The performance

overhead of the HYPERRACE consists of two parts: AEX

detection and co-location tests. We evaluated these two parts

separately because the frequency of AEX detection depends

on the program structure (e.g., control-flow graph) while

the frequency of the co-location tests depends on the num-

ber of AEXs detected. We use the execution time of non-

instrumented nbench applications (still compiled using LLVM)

with a shadow thread running on the co-located logical core

as the baseline in this evaluation.

To evaluate the overhead of AEX detection, we short-

circuited the co-location tests even when AEXs were detected

in HYPERRACE. Hence no co-location tests were performed.

Fig. 9 shows the overhead of AEX detection. Note that

q = Inf means that there is only one AEX detection at

the beginning of every basic block; q = 5 suggests that if

there are more than 5 instructions per basic block, a second

AEX detection is inserted; q = 20, q = 15, and q = 10
are defined similarly. Since each instrumentation for AEX

detection (by checking SSA) consists of two memory loads

(one SSA marker for each thread) and two comparisons, when

the basic blocks are small, the overhead tends to be large. For

example, the basic blocks in the main loop of assignment
benchmark application containing only 3 or 4 instructions per

0×

0.5×

1×

1.5×

2×

2.5×

 n

um
eri

c s
ort

 s
trin

g s
ort

bit
eld

 f

p e
mula

tio
n

fou
rie

r

as
sig

nm
en

t

 i
de

a

 hu

man

 n
eu

ral
 ne

t

lu
de

co
mpo

siti
on

N
or

m
al

iz
ed

 o
ve

rh
ea

d

q = Inf
q = 20
q = 15
q = 10
q = 5

Fig. 9. Runtime overhead due to AEX detection; q = Inf means one AEX
detection per basic block; q = 20/15/10/5 means one additional AEX
detection every q instructions within a basic block.

TABLE VII
MEMORY OVERHEAD (NBENCH).

Original q = 20 q = 15 q = 10 q = 5
Bytes 207, 904 242, 464 246, 048 257, 320 286, 448

Overhead - 16.6% 18.3% 23.7% 37.7%

basic block, the overhead of HYPERRACE on assignment is

large (i.e., 1.29×) even with q = Inf. Generally, the overhead

increases as more instrumentations are added. With q = Inf,

the overhead ranges from 0.8% to 129.3%, with a geometric

mean of 42.8%; when q = 5, the overhead ranges from 3.5%

to 223.7%, with geometric mean of 101.8%.

Overhead due to co-location tests. The overhead of co-

location tests must be evaluated when the number of AEX

is known. HYPERRACE triggers a co-location test when an

AEX happens in one of the two threads or both. By default,

the operating system generates timer interrupts and other types

interrupts to each logical core. As such, we observe around

250 AEXs on either of these two threads per second. To

evaluate the overhead with increased numbers of AEXs, we

used a High-Resolution Timers in the kernel (i.e., hrtimer)

to induce interrupts to cause more AEXs. The overhead is

calculated by measuring the overall execution time of one

iteration of the nbench applications, which includes the time

to perform co-location tests when AEXs are detected.

We fixed the instrumentation parameters as q = 20 in

the tests. The evaluation results are shown in Fig. 10. The

overhead of AEX detection has been subtracted from the

results. From the figure, we can tell that the overhead of co-

location tests is small compared to that of AEX detection. With

250 AEXs per second, the geometric mean of the overhead is

only 3.5%; with 1000 AEXs per second, the geometric mean

of the overhead is 16.6%. The overhead grows almost linear

in the number of AEXs.

Memory overhead. The memory overhead of the enclave code

is shown in Table VII. We compared the code size without

instrumentation and that with instrumentation under different

q values. The memory overhead ranges from 16.6% to 37.7%.

191

0×

0.05×

0.1×

0.15×

0.2×

0.25×

0.3×

 n

um
eri

c s
ort

 s
trin

g s
ort

bit
eld

 f

p e
mula

tio
n

fou
rie

r

as
sig

nm
en

t

 i
de

a

 hu

man

 n
eu

ral
 ne

t

lu
de

co
mpo

siti
on

N
or

m
al

iz
ed

 o
ve

rh
ea

d
250 AEXs per second
427 AEXs per second
611 AEXs per second

1000 AEXs per second

Fig. 10. Runtime overhead of performing co-location tests when q = 20.

0×
0.2×
0.4×
0.6×
0.8×

1×
1.2×

 AES de

cry
pt

 D
ES nc

bc en
cry

pt

 D

H co
mpu

te ke
y

ECDH co
mpu

te ke
y

 E

CDSA sig
n

RSA pri
va

te de
cry

pt

EVP Di

ge
st

(sh
a1

)

EVP Di
ge

st
(sh

a2
56

)

N
or

m
al

iz
ed

 o
ve

rh
ea

d

0.022

0.240 0.228

1.021

0.838

0.496

0.210 0.146

Fig. 11. Overhead of crypto algorithms.

B. Cryptographic Libraries

We also applied HYPERRACE to the Intel SGX SSL crypto-

graphic library [37] and measured the performance overhead of

eight popular cryptographic algorithms. We run each algorithm

repeatedly for 10 seconds and calculated the average execution

time for one iteration. Fig. 11 gives the overhead (for both

AEX detection and co-location test) when instrumented every

q = 20 instructions per basic block, and no extra AEXs

introduced (the default 250 AEXs per second).

The overhead for AES_decrypt algorithm is small

(around 2%) compared to other algorithms since its dominat-

ing basic blocks are relative large. In contrast, the overhead for

ECDH_compute_key and ECDSA_sign are relatively large

(i.e., 102.1% and 83.8%) because elliptic curve algorithms

consist of many small basic blocks. The overhead for other

evaluated algorithms ranges from 14.6% to 49.6%. The geo-

metric mean is 36.4%.The size of the complied static trusted

library libsgx_tsgxssl_crypto.a grew from 4.4 MB

to 6.6 MB, resulting in an memory overhead of 50%.

VIII. RELATED WORK

Related to our work is a large volume of literature on

micro-architectural side-channel attacks. Many of these attacks

leverage various shared resources on Hyper-Threading, such

as the L1 D-cache [20], [21], the L1 I-cache [22], [23],

[27], branch target buffers [18] and floating-point unit [19], to

perform same-core attacks against co-located victim processes.

These attacks also work on SGX-enabled processors.

Countermeasures to Hyper-Threading side-channel attacks

are less explored. The only known solution is to disable

Hyper-Threading. However, because the OS is not trusted

by the enclave programs, it cannot be trusted to disable

Hyper-Threading. Gruss et al. [30] briefly touched upon this

problem in their exploration of using TSX to mitigate cache

side channels. As the TSX-based solutions do not address

Hyper-Threading enabled attacks, they proposed to launch

two threads to occupy both logical cores of the physical

core, and construct a timing-less covert channel using TSX

transactions to verify that the two threads are indeed scheduled

on the same core. However, as discussed in Sec. IV-A, covert-

channel solutions are vulnerable to man-in-the-middle attacks.

As a countermeasure, Gruss et al. proposed to randomly

choose “a different L1 cache set (out of the 64 available)

for each bit to transmit”. However, because the adversary can

perform a PRIME-PROBE analysis on the entire L1 cache to

learn which cache set is used for the covert channel (and at

the same time extract the signals), man-in-the-middle attacks

are still feasible. In contrast, our scheme does not rely on

cache-contention based covert channels; even with the system

capability, the adversary cannot simulate the data races that

take place inside the enclave, fundamentally addressing the

man-in-the-middle threats.

HYPERRACE has been inspired by HomeAlone [38], which

utilizes cache side-channel analysis techniques to identify un-

known VMs in public clouds. HYPERRACE is different in that

it faces a stronger adversary who controls the entire system

software. The idea of using covert channels for co-location

detection has been applied in prior works to achieve VM co-

location in public clouds [39], [40], [41], [29]. Our method

of detecting AEX follows Gruss et al. [30]. A very similar

technique (i.e., placing markers in control data structures) has

been explored by Zhang et al. for detecting hypervisor context

switches from guest VMs [42].

IX. CONCLUSION

In conclusion, HYPERRACE is a tool for protecting SGX en-

claves from Hyper-Threading side-channel attacks. The main

contribution of our work is the proposal of a novel physical-

core co-location test using contrived data races between two

threads running in the same enclave. Our design guarantees

that when the two threads run on co-located logical cores of

the same physical core, they will both observe data races on

a shared variable with a close-to-one probability. Our security

analysis and empirical evaluation suggest that the adversary

is not able to schedule the two threads on different physical

cores while keeping the same probability of data races that

are observed by the enclave threads. Performance evaluation

with nbench and the Intel SGX SSL library shows that the

performance overhead due to program instrumentation and

runtime co-location tests is modest.

192

X. ACKNOWLEDGMENTS

We would like to express our sincere thanks to our shepherd

Jay Lorch and the anonymous reviewers for their valuable

feedback to help us improve the paper. The work was sup-

ported in part by the NSF grants 1566444, 1750809, 1527141,

1408874, 1618493, 1718084, an NIH grant 1U01EB023685

and an ARO grant W911NF1610127.

REFERENCES

[1] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Determin-
istic side channels for untrusted operating systems,” in IEEE Symposium
on Security and Privacy. IEEE, 2015, pp. 640–656.

[2] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Preventing page
faults from telling your secrets,” in 11th ACM on Asia Conference on
Computer and Communications Security. ACM, 2016, pp. 317–328.

[3] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx,
“Telling your secrets without page faults: Stealthy page table-based
attacks on enclaved execution,” in USENIX Security Symposium, 2017.

[4] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter, “Leaky cauldron on the dark land: Un-
derstanding memory side-channel hazards in SGX,” in ACM SIGSAC
Conference on Computer and Communications Security, 2017.

[5] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard, Malware
guard extension: Using SGX to conceal cache attacks. Springer
International Publishing, 2017.

[6] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-
R. Sadeghi, “Software grand exposure: SGX cache attacks are practical,”
in USENIX Workshop on Offensive Technologies, 2017.

[7] M. Hähnel, W. Cui, and M. Peinado, “High-resolution side channels for
untrusted operating systems,” in USENIX Annual Technical Conference,
2017, pp. 299–312.

[8] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks on
Intel SGX,” in EUROSEC, 2017, pp. 2–1.

[9] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, “Inferring
fine-grained control flow inside SGX enclaves with branch shadowing,”
in USENIX Security Symposium, 2017, pp. 557–574.

[10] Y. Yarom and K. E. Falkner, “FLUSH+RELOAD: A high resolution, low
noise, L3 cache side-channel attack,” in USENIX Security Symposium,
2014, pp. 719–732.

[11] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks:
Automating attacks on inclusive last-level caches,” in USENIX Security
Symposium, 2015, pp. 897–912.

[12] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$A: A shared cache attack
that works across cores and defies VM sandboxing—and its application
to AES,” in IEEE Symposium on Security and Privacy, May 2015.

[13] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in IEEE Symposium on Security and
Privacy. IEEE, 2015, pp. 605–622.

[14] Y. Yarom and N. Benger, “Recovering OpenSSL ECDSA nonces using
the FLUSH+RELOAD cache side-channel attack,” in Cryptology ePrint
Archive, 2014.

[15] M. Hähnel, W. Cui, and M. Peinado, “High-resolution side channels for
untrusted operating systems,” in USENIX Annual Technical Conference,
2017, pp. 299–312.

[16] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX: Eradicating
controlled-channel attacks against enclave programs,” in Network and
Distributed Systems Security (NDSS) Symposium, 2017.

[17] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detecting privileged
side-channel attacks in shielded execution with Déjá Vu,” in 12th ACM
on Asia Conference on Computer and Communications Security. ACM,
2017, pp. 7–18.

[18] O. Aciiçmez, c. K. Koç, and J.-P. Seifert, “Predicting secret keys via
branch prediction,” in 7th Cryptographers’ track at the RSA conference
on Topics in Cryptology, 2007, pp. 225–242.

[19] O. Aciicmez and J.-P. Seifert, “Cheap hardware parallelism implies
cheap security,” in Workshop on Fault Diagnosis and Tolerance in
Cryptography, 2007, pp. 80–91.

[20] C. Percival, “Cache missing for fun and profit,” in 2005 BSDCan, 2005.
[21] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-

measures: the case of AES,” in 6th Cryptographers’ track at the RSA
conference on Topics in Cryptology, 2006, pp. 1–20.

[22] O. Aciiçmez, “Yet another microarchitectural attack: exploiting I-
Cache,” in 2007 ACM workshop on Computer security architecture,
2007, pp. 11–18.

[23] O. Aciiçmez, B. B. Brumley, and P. Grabher, “New results on instruc-
tion cache attacks,” in 12th international conference on Cryptographic
hardware and embedded systems, 2010, pp. 110–124.

[24] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient cache attacks on
AES, and countermeasures,” Journal of Cryptology, vol. 23, no. 1, pp.
37–71, 2010.

[25] Y. Yarom, D. Genkin, and N. Heninger, “CacheBleed: a timing attack on
OpenSSL constant-time RSA,” Journal of Cryptographic Engineering,
vol. 7, no. 2, pp. 99–112, 2017.

[26] “Intel 64 and IA-32 architectures software developer’s manual, combined
volumes:1,2A,2B,2C,3A,3B,3C and 3D,” https://software.intel.com/
sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf,
2017, order Number: 325462-063US, July 2017.

[27] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-VM side
channels and their use to extract private keys,” in ACM conference on
Computer and communications security. ACM, 2012, pp. 305–316.

[28] B. S. Ahmad Moghimi, Thomas Eisenbarth, “MemJam: A false
dependency attack against constant-time crypto implementations,”
arXiv:1711.08002, 2017, https://arxiv.org/abs/1711.08002.

[29] D. Sullivan, O. Arias, T. Meade, and Y. Jin, “Microarchitectural
minefields: 4k-aliasing covert channel and multi-tenant detection in
IaaS clouds,” in Network and Distributed Systems Security (NDSS)
Symposium, 2018.

[30] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa,
“Strong and efficient cache side-channel protection using hardware
transactional memory,” in USENIX Security Symposium, 2017, pp. 217–
233.

[31] M. F. Chowdhury and D. M. Carmean, “Method, apparatus, and system
for maintaining processor ordering by checking load addresses of
unretired load instructions against snooping store addresses,” Nov. 19
2002, US Patent 6,484,254.

[32] “Intel software guard extensions programming reference,” https:
//software.intel.com/sites/default/files/managed/48/88/329298-002.pdf/,
2014, order Number: 329298-002, October 2014.

[33] A. Mazouz, A. Laurent, B. Pradelle, and W. Jalby, “Evaluation of
CPU frequency transition latency,” Computer Science - Research and
Development, vol. 29, no. 3, pp. 187–195, Aug 2014. [Online].
Available: https://doi.org/10.1007/s00450-013-0240-x

[34] Clang: a C language family frontend for LLVM. http://clang.llvm.org/.
[35] The LLVM compiler infrastructure. https://llvm.org/.
[36] Nbench-byte benchmarks. http://www.math.cmu.edu/∼florin/

bench-32-64/nbench/.
[37] Intel software guard extensions SSL. https://github.com/intel/

intel-sgx-ssl.
[38] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter, “HomeAlone: Co-

residency detection in the cloud via side-channel analysis,” in IEEE
Symposium on Security and Privacy, 2011.

[39] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: Exploring information leakage in third-party compute
clouds,” in ACM Conference on Computer and Communications Secu-
rity, 2009.

[40] V. Varadarajan, Y. Zhang, T. Ristenpart, and M. Swift, “A placement
vulnerability study in multi-tenant public clouds,” in USENIX Security
Symposium, 2015.

[41] T. Zhang, Y. Zhang, and R. B. Lee, “Dos attacks on your memory in
cloud,” in 12th ACM on Asia Conference on Computer and Communi-
cations Security. ACM, 2017.

[42] Y. Zhang and M. K. Reiter, “Düppel: retrofitting commodity operating
systems to mitigate cache side channels in the cloud,” in ACM Confer-
ence on Computer and Communications Security, 2013, pp. 827–838.

193

APPENDIX A

INTEL MICROPROCESSORS WITH SGX SUPPORT

SGX support as of Oct 2017. Note that although some of the processors support SGX, the feature may not be enabled by

default by system manufacturer in UEFI. Processors marked with � have Hyper-Threading (HT) support.

TABLE VIII: Intel CPU with SGX support

Generation Family Model

Skylake

Xeon
E3-1575M V5 � E3-1545M V5 � E3-1515M V5 � E3-1280 V5 � E3-1275 V5 � E3-1270 V5 �

E3-1268L V5 � E3-1260L V5 � E3-1245 V5 � E3-1240L V5 � E3-1240 V5 � E3-1235L V5
E3-1230 V5 � E3-1225 V5 E3-1220 V5 E3-1505L V5 � E3-1535M V5 � E3-1505M V5 �

Pentium
G4400TE 4405Y � 4405U � G4500 G4500T G4520

G4400 G4400T

Celeron
G3902E G3900E G3920 G3900TE G3900T G3900
3955U 3855U

Core

i3-6006U � i3-6157U � i7-6785R � i5-6685R i5-6585R i7-6660U �

i7-6970HQ � i7-6870HQ � i7-6770HQ � i5-6350HQ � i5-6402P i3-6098P �

i7-6822EQ � i7-6820EQ � i7-6700TE � i5-6500TE i5-6440EQ i5-6442EQ
i3-6100E � i3-6102E � i3-6100TE � i7-6920HQ � i7-6820HQ � i7-6820HK �

i7-6700HQ � i7-6650U � i7-6600U � i7-6560U � i7-6500U � i5-6440HQ
i5-6360U � i5-6300HQ i5-6300U � i5-6200U � i5-6260U � i5-6267U �

i5-6287U � i3-6100H � i3-6167U � m7-6Y75 � m5-6Y57 � m5-6Y54 �

m3-6Y30 � i7-6700T � i7-6700 � i5-6600 i5-6600T i5-6500
i5-6500T i5-6400 i5-6400T i3-6300 � i3-6300T � i3-6320 �

i3-6100 � i3-6100T � i7-6700K � i5-6600K i7-6567U �

Kabylake

Pentium
4415Y � G4600T � G4600 � G4620 � G4560T � G4560 �

4415U � 4410Y �

Celeron
3965Y G3930TE G3930E G3950 G3930T G3930
3965U 3865U

Core

i3-7130U � m3-7Y32 � i7-7920HQ � i7-7820HQ � i7-7820HK � i7-7820EQ �

i7-7700HQ � i7-7700 � i7-7700K � i7-7700T � i7-7660U � i7-7600U �

i7-7567U � i7-7560U � i5-7600K i5-7600T i5-7600 i5-7500
i5-7500T i5-7442EQ i5-7440HQ i5-7440EQ i5-7400T i5-7400

i5-7360U � i5-7300U � i5-7300HQ i5-7287U � i5-7267U � i5-7260U �

i5-7Y57 � i3-7350K � i3-7320 � i3-7300 � i3-7300T � i3-7102E �

i3-7101E � i3-7101TE � i3-7100T � i3-7100E � i3-7100 � i3-7167U �

i3-7100H � i7-7500U � i7-7Y75 � i5-7200U � i3-7100U � m3-7Y30 �

i5-7Y54 �

Xeon
E3-1285 V6 � E3-1501L V6 E3-1501M V6 E3-1280 V6 � E3-1275 V6 � E3-1270 V6 �

E3-1245 V6 � E3-1240 V6 � E3-1230 V6 � E3-1225 V6 E3-1220 V6 E3-1535M V6 �

E3-1505M V6 � E3-1505L V6 �

Coffee Lake Core
i7-8700 � i7-8700K � i5-8600K i5-8400 i3-8350K i3-8100

i7-8650U � i7-8550U � i5-8350U � i5-8250U �

194

