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WhistleBlower: A System-level Empirical Study
on RowHammer
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Abstract—With frequent software-induced activations on DRAM rows, bit flips can occur on their physically adjacent rows (i.e.,
RowHammer). Existing studies leverage FPGA platforms to characterize RowHammer, which have identified key factors that contribute
to RowHammer bit flips, e.g., data pattern. As the FPGA-based studies have removed the interference of the OS and the memory
controller, their findings on the identified contributing factors do not always work as reported in a real-world computing system, resulting
in negative effects on system-level RowHammer attacks and defenses.
In this paper, we carry out a system-level empirical study on factors from both the software side and the DRAM side that contribute to
RowHammer. We conduct the study on 33 DRAM modules including both DDR4 and DDR3, with 292 DRAM chips from various
vendors. Our experimental results from the software side show that some prior findings about existing factors are inconsistent with our
observations, thus not applicable to a real-world system. Also, we contribute to identifying one new factor that effectively affects
RowHammer bit flips. Our DRAM-side results identify three types of new contributing factors and indicate that DRAM modules are
more vulnerable if they achieve better performance and lower power consumption. Particularly, Intel XMP, intended for improving
DRAM performance, might be abused for RowHammer attacks.

Index Terms—RowHammer, DRAM, FPGA, Computing System.
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1 INTRODUCTION

W Ith the rapid progress of semiconductor technol-
ogy, DRAM storage cells continue scaling down

and distances between cells are getting smaller, resulting
in electromagnetic coupling problems [1]. Among them,
RowHammer has attracted the most attention from both
academia and industry in recent years, as it poses a a serious
challenge to system security. Specifically, RowHammer is
a circuit-level interference phenomenon where repeatedly
accessing DRAM rows (aggressor rows) can induce bit flips
in data from nearby rows (victim rows) [2]. By exploiting
RowHammer-induced bit flips, an unprivileged attacker can
achieve privilege escalation [3], [4], [5], [6], [7], [8], [9], [10],
sandbox escaping [6], [7], [11], [12], denial-of-service [13]
and cryptographic key recovery [14], [15].
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To address the security challenge and mitigate the
RowHammer attacks, researchers have spent great efforts
characterizing RowHammer with the assistance of Field-
Programmable Gate Array (FPGA) platforms [2], [16], [17],
[18], [19], [20], [21], and their results have identified key fac-
tors that contribute to RowHammer bit flips both effectively
and efficiently. Although FPGA platforms can serve as an al-
ternative and controllable memory controller to obtain pre-
cise results, such platforms conceal the complexity of real-
world computing systems, which are the primary targets of
attackers. Thus, the identified RowHammer factors might
not work as expected in a real-world scenario, as these
factors were tested through the FPGA platform without the
interference from the OS and memory controller.

For example, Kim et al. [2] leverage the FPGA platform
to characterize RowHammer bit flips based on the DRAM
cell type [22]. In particular, RowHammer causes a DRAM
true cell flip from ‘1’ to ‘0’ and an anti cell flip from ‘0’
to ‘1’. Following their work, CTA [23], as a system-level
RowHammer defense, places all page tables onto high phys-
ical addresses of true cells and leverages the monotonic
bit-flip direction of true cells to protect page tables from
RowHammer attacks. However, in a real-world commodity
system, the monotonic property does not hold, because the
data scrambling feature deployed by the modern memory
controller [24] enables a true cell to flip from either direction,
breaking the security guarantee of CTA. Also, Cojocar et
al. [16] utilize the FPGA and the UEFI firmware to record
DDR commands and count DRAM activation rate. They
show that using memory barriers (e.g., mfence) slows
down the DRAM activation (ACT) rate and induces less bit
flips. In contrast, we observe from a real-world system that
using mfence for hammer can trigger much more bit flips.
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Besides, hardware manufacturers frequently tune
DRAM parameters to improve performance and reduce
power consumption, which are likely to introduce more
vulnerable DRAM modules. For example, eXtended Mem-
ory Profile (XMP) [25], proposed by Intel, optimizes DRAM
process and parameters to overclock DRAM and improve
DRAM performance. We observe that enabling XMP from
hardware significantly increases DRAM susceptibility to
RowHammer, indicating that an attacker might abuse
XMP to mount a RowHammer attack. Unfortunately, many
DRAM parameters have been ignored by prior works and a
comprehensive evaluation of these parameters with regard
to RowHammer is needed.

1.1 Our Work

To bridge the gap between FPGA-based findings and
system-level RowHammer defenses and attacks, we per-
form an empirical study on factors contributing to
RowHammer bit flips from a real-world system (i.e., a
system-level study), using a popular Ubuntu OS and 33
different DRAM modules including both DDR3 and DDR4
(292 DRAM chips from 12 vendors). Specifically, our testbed
consists of commercially available hardware, that is, Intel
i3-10100 processor + MSI Z490 motherboard and Intel i7-
4790 processor + ASUS Z97 motherboard. For the software
of our testbed, we extend DRAMDig [28], a DRAM ad-
dress mapping reverse engineering tool, to implement a
RowHammer test. Our test supports 5 user-configurable
parameters that have observable effects on bit flips, i.e.,
hammer pattern, data pattern, hammer method, hammer count
and multi-thread. We first launch the RowHammer test with
default DRAM parameters to perform memory templating
and find a certain number of physical addresses vulnerable
to bit flips. Based on the stored vulnerable addresses, we
then investigate factors from both the software side and the
DRAM side as follows.
Investigating factors from the software side. We attribute
RowHammer factors that can be controlled by software into
this category. They are known to have noticeable effects on
bit-flip rates, and are thus crucial for RowHammer attacks
and defenses. In our study, we first summarize prior find-
ings about existing contributing factors. We then provide
the RowHammer test with different parameter values to
re-evaluate these findings in terms of their bit-flip rate on
the vulnerable addresses. Table 1 shows a comparison of
prior findings and our empirical observations. For the re-
evaluation, we also leverage an FPGA board to reproduce
some prior findings from prior FPGA-based studies, that
is, we leverage SoftMC [29], an open-source FPGA-based
platform to perform RowHammer tests on a Xilinx ML605
FPGA board. As a comparison, similar experiments are
conducted in a Lenovo Thinkpad T420s laptop with Ubuntu
Gnome environment installed. Both the FPGA board and
the Thinkpad laptop use the same vulnerable single-rank
Samsung DDR3 SODIMM (2 GiB with 8 DRAM chips). We
summarize the experimental results as well as the new
contributing factor identified in our study as follows.
• Hammer pattern (e.g., many-sided hammer [30]) specifies
the number of rows being hammered. An effective hammer
pattern results in frequent row activations and could bypass

Target Row Refresh (TRR), a RowHammer defense imple-
mented in present DDR4 modules [31]. We have examined
4 hammer patterns and observe that hammering fewer rows
with the same access number for each row achieves better
bit-flip effectiveness, being inconsistent with [17] which
claims that if an n1-side hammer (n1 > 2) can successfully
flip the bit, then n2-side hammer (n2 > n1) is also suc-
cessful to induce the bit flip if the same access number is
applied. We note that we have successfully reproduced the
claim from [17] using the FPGA board and the system-level
observation using the Thinkpad laptop.

• Data pattern refers to data values stored in aggressor
and victim rows (e.g., “RowStripe” [2]), which is critical in
triggering bit flips. In [26], the “Killer” pattern is reported
to be the most effective in triggering bit flips. In our study,
we tested 10 data patterns including the “Killer” pattern.
The results show that the “RowStripe” and “Checkered”
patterns with their inverses are the most effective ones
among the tested data patterns on the system-level. We also
conduct the same experiments on both the laptop and the
FPGA board. The results from the laptop are consistent with
the system-level observation. While for the FPGA board, the
results confirm prior works [2], [18] done at the FPGA level,
that is, the ‘RowStripe” pattern is the most effective one.

• Hammer method (e.g., clflush followed by a memory load
and mfence [2]), bypasses CPU caches and enables DRAM
memory accesses to a row being hammered. We have exper-
imented with 12 hammer methods and showed that these
methods have different RowHammer bit-flip effectiveness
in given DRAM modules. We also observe that the order of
bypassing caches and triggering memory accesses (known
as the “gather” pattern and the “scatter” pattern) do not
work the same as observed in [11]. The two patterns show
distinct effectiveness in triggering bit flips against given
DRAM modules. Besides, we note that a hammer method
without a memory barrier (e.g., mfence) induces much
fewer bit flips compared to that with a memory barrier
on some given DRAM modules, which is inconsistent with
the observation from [16] in the FPGA level, indicating that
an improved DRAM activation rate made from the FPGA
platform does not necessarily contribute to a more effective
hammer method at the system level. As the number of
row buffer conflicts is an strong indicator of hammering
effectiveness, we leverage an Intel server (i.e., Intel Xeon
E5-2660 v2), to collect the statistics of row buffer conflicts
caused by different hammer methods with and without
mfence. The results show that different hammer methods
cause different row buffer conflict rates and thus cache-
flush instructions with memory read are more effective than
other hammer methods, while the mfence-based hammer
methods do increase the row buffer conflict rate, resulting
in an improved hammering effectiveness.

• Minimal hammer count is the least number of accesses
required to each hammered row for inducing the first bit
flip. We test the minimal hammer count (i.e., HCfirst in [18])
from the system-level and find that the minimal hammer
count of DDR4 modules (i.e., 10K) is same as previously
reported [18] while the minimal hammer count of DDR3
modules is much higher than that from previous FPGA-
level works [2], [18]. Our experiments on the laptop and
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TABLE 1
A comparison of prior findings and our system-level empirical study.

Factor Prior Finding Our Observation

Hammer Pattern
In FPGA platforms, a vulnerable bit flippable with
n1-side hammer (n1 > 2) is also flippable in n2-
sided (n2 > n1) hammer [17].

More hammered rows can prevent a vulnerable bit
from flipping in our system-level study.

Data Pattern The “Killer” data pattern is the most effective in
triggering bit flips [26].

The “RowStripe” is more effective than the “Killer”
data pattern.

Hammer Method

The non-temporal instructions can be used for
RowHammer [12].

The non-temporal instructions are ineffective on
certain DRAM modules.

The “scatter” sequence cannot induce bit flips while
the “gather” sequence can do so [11].

Both sequences can induce bit flips.

The memory barriers decrease the ACT rates, result-
ing in a lower hammer effectiveness [16].

The memory barriers do have a role in effectively
triggering bit flips from a real-world system.

Minimal In FPGA platforms, the minimal hammer count can To induce bit flips in real-world systems, the

Hammer Count be as few as around 20K per row in DDR3 and 10K
per row in DDR4 [18].

minimal hammer count on DDR4 is the same as Kim
et al. [18] reported, while much more in DDR3.

Multi-thread
Compared to single-thread, multi-thread for ham-
mer is more effective in triggering bit flips on both
DDR3 and DDR4 modules [8], [13], [26], [27].

The effectiveness of multi-thread-based hammer de-
pends on the DRAM module type.

Bit-flip Direction
CTA [23] leverages true cell to enforce monotonic
bit-flip direction on targeted DRAM regions without
considering the data scrambling.

The data scrambling feature, employed by the mem-
ory controller, invalidates CTA as it allows a cell to
flip from either ‘1’ to ‘0’ or ‘0’ to ‘1’.

the FPGA board validate the DDR3-based finding, that is,
the minimal hammer count on DDR3 in the system-level is
much more that in the FPGA-level.
• Multi-thread is proposed to improve hammer effectiveness,
as hammering multiple aggressor rows within a single
thread is inefficient [8], [13], [26], [27]. Our system-level
RowHammer test supports multi-thread hammer, based
on the implementations of SGX-BOMB1 and “rowham-
mer armv8” 2. The experiments show that multi-thread
hammer is much less effective than single-thread hammer
for DDR4 modules with TRR, and more effective for DRAM
modules without TRR. The effectiveness difference is prob-
ably caused by the TRR’s sampler, which might be ignored
by prior works [8], [13], [26], [27].
• Bit-flip Direction. From our system-level RowHammer test,
we observe that the bit-flip direction for a DRAM cell can be
different if the system restarts, that is, a vulnerable DRAM
cell can be flipped from either ‘0’ to ‘1’ or ‘1’ to ‘0’, which
can be attributed to the data scrambling feature in modern
commodity systems. The effect of data scrambling has been
ignored by a recent RowHammer defense (i.e., CTA [23] in
ASPLOS’19), which leverages different DRAM cell types to
enforce monotonic bit-flip direction.
• Running Environment. We have identified a new contribut-
ing factor that significantly affects the number of bit flips
that can be triggered. Particularly, we conduct our system-
level RowHammer test on the Ubuntu Gnome environment
and text-only terminal, respectively. The results show that
the Ubuntu Gnome environment is much more effective in
inducing bit flips (the number of bit flips can be two orders
of magnitude more).
Identifying factors from the DRAM side. Motivated
by XMP, we leverage the system-level RowHammer test
with different DRAM parameters to explore the DRAM-
side factors. Particularly, we examine the effectiveness of

1. https://github.com/sslab-gatech/sgx-bomb
2. https://github.com/VandySec/rowhammer armv8

RowHammer with respect to major DRAM parameters,
including the DRAM frequency, DRAM supply voltage, and
DRAM timing parameters. The results in general imply
that a DRAM module is more vulnerable to RowHammer
if it is configured for better performance, similar to the
aforementioned observation of XMP. We have identified
three types of contributing factors as follows.
• Frequency. The frequency always facilitates RowHammer,
as a higher DRAM clock rate improves memory-access
throughput and triggers more bit flips.
• Supply Voltage. The higher supply voltage often suppresses
RowHammer, as it may overcharge DRAM cells. Accord-
ingly it is relatively more difficult for cells to leak enough
charge, resulting in fewer bit flips.
• Timing Parameters. We select 17 timing parameters for
configuration (16 for DDR4 and 10 for DDR3). From our
experiments, RowHammer mainly correlates with 6 pa-
rameters, i.e., tRCD, tRP, tRAS, tRFC, tREFI and tWR.
Interestingly, we observe that some of the parameters (e.g.,
tRAS) may affect the bit-flip effectiveness either positively
or negatively, depending on the tested DRAM modules.

1.2 Contributions

In summary, this paper makes the following contributions.
• We conduct a comprehensive system-level empirical study
of factors that contribute to Rowhammer bit flips. Our study
examines factors from both the software side and the DRAM
side based on extensive RowHammer tests.
• From the software side, we re-evaluate prior findings
about 5 existing factors and a neglected feature, showing
that most existing findings are inconsistent with our empir-
ical observations and thus they are not widely applicable.
Moreover, our study reveals a new contributing factor in
affecting RowHammer bit-flip effectiveness.
• From the DRAM side, we quantify the impacts of major
DRAM parameters on the effectiveness of Rowhammer,
including DRAM frequency, DRAM supply voltage, and
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Fig. 1. The DRAM memory organization.

DRAM timing parameters. Our study identifies a potentially
exploitable Intel feature and 3 types of contributing factors.

2 BACKGROUND AND RELATED WORKS

In this section, we first provide DRAM basics and then
introduce RowHammer as well as related works. Please
refer to the JEDEC standards [32], [33], [34] and two com-
prehensive surveys [1], [35] for more details about DRAM
and RowHammer, respectively.

2.1 DRAM

DRAM Organization. Figure 1 presents an overview of a
modern DRAM memory organization. Specifically, a mem-
ory controller (MC) transfers data and commands to and
from DRAM modules through memory channels. A modern
DRAM module known as the Dual In-line Memory Module
(DIMM) is usually composed of one or two ranks. A rank
consists of a set of DRAM chips that operate in lockstep to
reply to commands from the MC. A DRAM chip has mul-
tiple cross-chip banks, and each bank has a sense amplifier
and many subarrays. A sense amplifier, also called the row
buffer, senses a row of data that has been recently accessed. A
subarray is a two-dimensional array of DRAM cells, which
is divided into rows and columns for its connected wordline
and bitline. Each cell consists of an access transistor serving
as a switch and a capacitor storing a single bit of either ‘1’ or
‘0’. A cell has two types, i.e., true cell and anti cell. When the
true cell’s capacitor is charged (or discharged), it represents
bit ‘1’ (or bit ‘0’). The anti cell works in the opposite way.
DRAM Operations. A modern MC issues a set of DRAM
commands to read (or write) data from (to) DRAM chips.
First, an activate (ACT) command is sent to open a targeted
row, whose data will then be copied into the row buffer.
Second, a read/write (RD/WR) command is issued to select
the desired cache lines from the row buffer for loading or
storing data. Last, a precharge (PRE) command is used to
close the row and clear the row buffer for subsequent access
to another row.

As DRAM cells leak charge over time, a minimum time
period that the cells maintain a correct bit is referred to
as the retention time. The MC periodically issues a refresh
(REF) command to the DRAM banks to ensure all cells are
refreshed before the retention time expires. The standard
refresh interval for a row is 64 ms [32], [34], within which at
least 8192 REF commands need to be issued.

2.2 Related Works

RowHammer. Kim et al. [2] were the first to identify
the existence of electromagnetic disturbance errors (the so-
called RowHammer) in modern DIMMs. They observed
that activating aggressor rows (i.e., hammering) frequently
enough within the refresh interval can flip bits stored in
adjacent victim rows. Even worse, recent DIMMs are more
vulnerable to RowHammer than before, as DRAM manufac-
turers continue increasing DRAM storage density [18], [36].

There are several empirical studies on RowHammer [2],
[16], [17], [18], [19], [20], [21], [26]. To characterize RowHam-
mer and explore factors that contribute to RowHammer,
some [2], [19], [20], [21] experiment with DDR3 modules
while some others [16], [17], [18], [26] focus on both DDR3
and DDR4 modules.

All existing empirical studies above except [26] utilize
FPGAs to characterize RowHammer. Particularly, Kim et
al. [2] provide a relatively comprehensive RowHammer
characterization and identify multiple factors triggering
RowHammer such as access pattern, hammer count, data
pattern, DRAM cell type, etc. Following their work, Park et
al. [19], [20], [21] conduct experimental studies on minimal
hammer count, data pattern, ambient temperature and tRP
(i.e., a period for the DRAM PRE command). Kim et al. [18]
examine a large amount of DDR3, DDR4 and lpDDR4
chips about minimal hammer count, data pattern and error
spatial distribution, reporting that newer DRAM chips are
more vulnerable to RowHammer. Jiang et al. [17] propose
a mathematical model of capacitive-coupling in DRAM and
analyze multiple factors in their proposed model contribut-
ing to RowHammer. Cojocar et al. [16] explore the DRAM
internal address mapping and the hammer efficiency of
different hammer methods using a DDR interposer and an
FPGA on Intel server platforms booting into the UEFI mode.
All these FPGA-based works have identified critical fac-
tors contributing to RowHammer. Besides the FPGA-based
studies, Lanteigne [26] implements Memesis, a customized
Linux kernel embedded enterprise memory test, to examine
multi-threading hammer, regional RowHammer (i.e., 2 MB
memory region as a Linux hugepage for hammering) and
data pattern.

However, none of the above studies analyze RowHam-
mer at a commodity-operating-system level, generating a
non-neglectable gap between their findings and OS-level
RowHammer attacks and defenses. To this end, multiple
RowHammer attacks and defenses [11], [14], [23], [37],
[38], [39], [40] spend efforts in analyzing and leveraging
one or more RowHammer-relevant factors. For example,
Radar [39] studies the impacts of different hammer methods
on hammering efficiency while Smash [11] investigates the
hammering effectiveness from different sequences of cache-
flush instructions and memory accesses. RAMBleed [14]
and Pinpoint [38] carefully craft data patterns to suppress
unwanted RowHammer bit flips. ANVIL [37] reports that
RowHammer still occurs in real-world systems even if the
DRAM refresh interval is reduced by half. CTA [23] imple-
ments a system-level method to identify the DRAM cell type
for a given DRAM row.
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3 EVALUATION METHODOLOGY

Our primary goal is to re-evaluate existing factors and
explore new factors that contribute to RowHammer bit flips
at the system level, i.e., on real-world computing systems. We
consider both software factors (controlled by software) and
DRAM factors (configured by the DRAM manufacturer or
by the user through the BIOS). We conduct the experiment
in the following three steps.
• First, to rule out the effect of robust DRAM cells, we need
to collect enough vulnerable DRAM locations in advance.
For this purpose, we conduct a RowHammer test with
default parameters’ values to find enough (i.e., more than
1000) vulnerable physical addresses per module where re-
producible bit flips occur and collect these addresses offline.
• Second, we investigate the effect of each candidate fac-
tor from the software side on bit flips by varying the
parameters’ values for the RowHammer test with the de-
fault DRAM parameter configuration (refer to Table 7). We
quantify the effectiveness of the candidate factor using the
metric of bit-flip rate, i.e., the number of re-generated bit flips
divided by the number of collected vulnerable bits.
• Last, we evaluate the effect of each candidate factor from
the DRAM side on bit flips. We use the default system-level
RowHammer test to further study the effects of candidate
factors from the DRAM side.

In this section, we first discuss how to conduct the
RowHammer test and describe our experimental setup.
Deriving from our RowHammer test, we then elaborate our
empirical study from both the software side (Sec. 4) and the
DRAM side (Sec. 5) respectively.
System-level RowHammer Test. To trigger RowHammer
bit flips and collect vulnerable physical addresses for a
given DRAM module, we develop an effective Rowhammer
test tool, which has 5 user-configurable parameters (i.e.,
hammer pattern, data pattern, hammer method, hammer count
and multi-thread). The source code used for evaluation has
been released at https://github.com/whistleblower2022/w
histleblower tool. We introduce how to implement the tool
as follows.

Specifically, based on a distribution of rows being ham-
mered (i.e., aggressor rows), we have multiple hammer pat-
terns [5], [7], [30]. Among them, our extended RowHammer
test selects double-sided hammer for DDR3 modules as it
is the most efficient [7]. For DDR4 modules, we leverage
TRRespass [30] to identify the best hammer pattern that
produces most bit flips within a specified time frame, shown
in Table 2. To implement the efficient hammer patterns,
(partial) knowledge about the virtual-to-physical address
mapping and physical-to-DRAM address mapping is re-
quired from the software perspective [3]. In our evaluation,
we have access to the /proc/pid/pagemap interface for
virtual-to-physical address mapping. We further reverse
engineer the physical-to-DRAM address mapping to issue
memory requests precisely by DRAMDig [28]. Then we
can specify rows within the same bank for subsequent
hammering under a given hammer pattern.

Previous works [2], [14], [18] have shown that data
values stored in the aggressor and victim rows also have
observable effects on bit flips, known as data pattern. There
have been a number of proposed data patterns such as

“Solid” and “RowStrip” [2], among which the difference
in inducing bit flips can be in an order of magnitude. We
incorporate 10 data patterns detailed in Sec. 4.2 into our
test and select the “RowStripe” as the default3.

After padding targeted rows with a distinct data pat-
tern, we need an appropriate hammer method to enable
direct memory accesses to every aggressor row. Existing
hammer methods can be classified into three categories,
cache eviction-based [4], [11], [37], [41], uncached memory-
based [8], [42], [43], and explicit instructions-based [2], [5],
[7], [15], [16], [30]. In our test, we implement 12 hammer
methods and choose the clflush+read-based sequence
with mfence that works for our Intel processors as the
default hammer method.

Hammer count is the number of accesses to each ham-
mered row in a finite loop. We choose 1000K based on pre-
vious works [7], [30], [41]. Each hardware thread of multiple
threads can be used to hammers all aggressor rows [8], [13],
or hammers some aggressor rows [27]. We use single-thread
by default.

Experimental Setup. We use Ubuntu Gnome environment
to run a system-level RowHammer test, which allocates
80% size of the total memory to find vulnerable physical
addresses using default parameter values. To this end, we
install Ubuntu systems on commodity platforms and focus
on evaluating 31 DDR4 modules with 276 chips and 2
DDR3 modules with 16 chips, as DDR4 is the mainstream
in the market and DDR3 is relatively outdated. Although 31
DDR4 modules have been tested, only 4 out of them have
a statistical number of bit flips, which come from different
vendors. Table 2 shows the experiment setup including the
6 vulnerable DRAM modules where our RowHammer test
is conducted as well as three default hammer parameters.

Besides, we use an FPGA board to reproduce observa-
tions from prior FPGA-based studies to show the difference
in hammering effectiveness from the FPGA level and the
system level. Specifically, we leverage SoftMC [29], an open-
source FPGA-based infrastructure to perform RowHammer
tests on a Xilinx ML605 FPGA board. The FPGA board has a
DDR3 SODIMM slot with a vulnerable single-rank Samsung
DDR3 SODIMM (2 GiB with 8 DRAM chips) inserted, and
a PCIe interface connecting itself to a Linux host machine.
Please note that the DDR3 SODIMM has a part number
of M471B5773DH0-CH9, which is different from the tested
UDIMMs that are suitable only for a workstation as shown
in Table 2. SoftMC is composed of 3 major parts, i.e.,
API, PCIe driver, and hardware and the general working
flow among the three parts is as follows: the Linux host
machine generates a set of SoftMC instructions by invoking
the SoftMC API, which is sent by the SoftMC PCIe driver
over a PCIe bus to the SoftMC hardware implemented
on the FPGA board. After receiving the instructions, the
SoftMC hardware can execute them. As a comparison, simi-
lar RowHammer tests are conducted in a Lenovo Thinkpad
T420s laptop with Ubuntu Gnome environment installed
and the same vulnerable DDR3 module used.

3. We pad memory with the “RowStripe” and its variant (i.e., its
inverse) respectively in a RowHammer test and sum up their number
of bit flips for the evaluation of “RowStripe”.

https://github.com/whistleblower2022/whistleblower_tool
https://github.com/whistleblower2022/whistleblower_tool
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TABLE 2
Experimental setup and three default hammer parameters.

Setting DIMM Vendor Part Size #Chips #Banks Hammer Hammer Data
Number (GiB) Pattern Method Pattern

M0 Kingston 99P5701-005.A00G 8 16 32 3-sided
MSI Z490 M1 Apacer D12.2324WC.001 8 8 16 2-sided clflush+ “RowStripe”
i3-10100 M2 Galaxy —1 8 8 16 13-sided read with

M3 Samsung M378A1G44AB0-CWE 8 4 8 18-sided with its
ASUS Z97 M4 Hynix HMT41GU6MFR8C-P8 8 16 16 2-sided mfence inverse

i7-4790 M5 G.Skill F3-14900CL9-4GBSR 4 8 8 2-sided
1 The part number field of M2 is empty when read from both OS and BIOS.

TABLE 3
A comparison of Xilinx ML605 FPGA and Thinkpad T420s in bit-flip

rates caused by different hammer patterns.

Bit-flip Rate Hammer Pattern (n-sided)
3-sided 4-sided 5-sided

Xilinx ML605 88.82% 88.82% 89.28%
Thinkpad T420s 81.03% 29.58% 8.41%

4 FACTORS FROM THE SOFTWARE SIDE

From previous works, we have summarized 5 existing fac-
tors from the software perspective including the hammer
pattern, data pattern, hammer method, hammer count and
multi-thread. We also identify a new contributing factor,
that is, running environment. In the following, we conduct
quantitative experiments on these factors to re-evaluate
previous findings and present new empirical observations
at the system level. Particularly, we re-evaluate three factors,
i.e., the hammer pattern, the data pattern and the minimal
hammer count in both FPGA and OS contexts. We note that
prior FPGA studies do not study other factors mentioned
before as they are not supported by the FPGA platform. And
we analyze the impact of data scrambling on RowHammer,
which has been ignored by existing RowHammer character-
ization works.

4.1 Hammer Pattern
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Fig. 2. Average bit-flip rate on tested modules when different hammer
patterns (in the left plot) and different data patterns (in the right plot) are
applied, respectively. Each bar in the right plot is a sum of bit-flip rates
generated from a data pattern and its inverse. The “Sol”, “Row”, “Col”,
“Che”, “Kil” are short for “Solid”, “RowStripe”, “ColStripe”, “Checkered”,
“Killer”.

The hammer pattern denotes the number of hammered
rows and there are four uniform hammer patterns from
prior works, i.e., single-sided hammer [2], [7], double-sided
hammer [2], [7], one-location hammer [5] and many-sided
hammer [30]. In this section, we evaluate the effect of the
aggressor-row number on RowHammer.

Recently, Jiang et al. [17] report that if n1-sided hammer
(n1 > 2) induces bit flips successfully, any n2-sided hammer

(n2 > n1) should also be successful when they apply the
same hammer count to each hammered row. Specifically,
they first find reproducible bit flips in certain DRAM cells
by hammering and then apply less aggressor rows to these
location. In our system-level experiment, we start with the
default hammer pattern and increase the number of aggres-
sor rows keeping hammer count the same. As the bit-flip
rate tendency of different hammer pattern on each module is
similar, we deliver the average bit-flip rate of all 6 modules
in the left plot of Figure 2. The average bit-flip rate for each
tested DIMMs decreases as the number of hammered rows
increases. This is probably because that, when more rows
are hammered, the time for hammering each row is reduced
within the fixed DRAM refresh interval and victim rows are
less likely to leak charge, thus generating less bit flips.

We reproduce the experiments above using the FPGA
board and carry out the above system-level experiment on
the Thinkpad laptop. To be specific, we randomly select
more than 1000 bits that can be flipped using 5-sided
RowHammer on the FPGA board. We then count the bit-flip
rate of these flippable bits under 3/4/5-sided RowHammer.
As we can see from Table 3, the bit-flip rate for each 3/4/5-
sided RowHammer is similar to each other in the FPGA
context, validating the previous observation in [17]. For the
Thinkpad T420s, we collect vulnerable bits under 3-sided
RowHammer and conduct the system-level experiments as
above. The results on Thinkpad are also shown in Table 3.
Clearly, increasing the number of hammered rows reduces
hammer effectiveness towards the selected vulnerable bit at
the system level .

Observation 1: If row buffer is flushed and TRR is bypassed,
more hammered rows trigger less bit flips at the system level.

4.2 Data Pattern

Fig. 3. “Killer” data pattern. The sandwiched victim row looks as
‘0x492492...’ in hexadecimal.

Data pattern refers to the data values stored in aggressor
rows and victim rows. Typically, there are four common
data patterns [2]: “Solid” (all cells are padded with the
same value ‘0’ or ‘1’), “RowStripe” (rows padded with ‘0’
are interleaved with rows padded with ‘1’), “ColStripe”
(columns padded with ‘0’ are interleaved with columns
padded with ‘1’) and “Checkered” (cells are padded with
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TABLE 4
A comparison of Xilinx ML605 FPGA and Thinkpad T420s in bit-flip

rates caused by different data patterns and their inverses.

Bit-flip Rate Data Pattern
Sol Row Col Che Kil

Xilinx ML605 1.60% 94.41% 0.80% 44.46% 63.44%
Thinkpad T420s 3.10% 36.81% 2.71% 37.04% 26.49%

either ‘0’ or ‘1’ in a checkerboard pattern). Lanteigne [26]
reports that the “Killer” data pattern (cells in a row are
padded in a 3-bit cycle of either ‘010’ or ‘101’, making the
row look as ‘0x492492...’ or ‘0xb6db6d...’ in hexadecimal,
and the bit cycle shifted by one bit is used to pad nearby
rows, shown in Figure 3) is the most effective in inducing
bit flips among all data patterns on their tested modules.
We re-evaluate these data patterns with their inverses on our
testbed. Similar to the hammer pattern, we show the average
bit-flip rate of all 6 modules in the right plot of Figure 2,
manifesting that the “RowStripe” and the “Checkered” data
patterns are the best while the “Killer” data pattern is not.
Besides, as the bit-flip rate for a data pattern where cells
of each row have the same values (e.g., “RowStripe”) is
much higher than that of a data pattern where cells of each
column have the same values (e.g., “ColStripe”), aggressor
cells and victim cells are more likely to reside in different
rows rather than in different columns of the same row. Our
results indicate the disturbance impact raised by different
wordlines is larger than that from different bitlines, which
is consistent with previous FGPA-based studies [2], [18].

We also use the Xilinx ML605 and Thinkpad to compare
the hammering effectiveness from two levels and present re-
sults in Table 4. The results from the Thinkpad are consistent
with previous system-level experiments shown in Figure 2,
that is, the ‘RowStripe” and “Checkered” perform the best at
the system level. The results from the Xilinx ML605 are also
consistent with prior works [2], [18] done at the FPGA level,
that is, the ‘RowStripe” is the most effective data pattern.
But these are inconsistent with a previous observation done
by [26] that reports that the “Killer” is the most effective
one 4. The different effectiveness for the same data pattern
between the FPGA and OS contexts might be caused by
the data-scrambling feature within the memory controller,
as the “Killer” that is perceived by the OS might not be the
“Killer” from the perspective of the FPGA.

Observation 2: “Killer” is not as effective as previously
reported [26] at the system level. “RowStripe” performs the
best at the system level, consistent with prior works [2], [18]
done at the FPGA level.

mov (X), %rax | movnti %rax, (X)
clflush (X) | mov %rax, (X)
mov (Y), %rax | movnti %rax, (Y)
clflush (Y) | mov %rax, (Y)
mov (Z), %rax | movnti %rax, (Z)
clflush (Z) | mov %rax, (Z)
mfence | mfence

Listing 1. 3-sided hammer: clflush+r (left) and movnti+w (right)

4. We note that the observation is neither done from the FPGA level
nor the real-world OS level. Instead, [26] uses Memesis, a Linux kernel
embedded commercial memory test.

4.3 Hammer Method
Based on the default RowHammer test that implements
clflush, we evaluate different instruction-based hammer
methods, which are the most efficient for a local test in
x86 architectures [39]. Specifically, we consider two types
of instructions available on our Intel platforms: cache-flush
instructions including clflush [7] and clflushopt [16]
and non-temporal instructions [12] including movnti and
movntdq. We provide our system-level RowHammer test
with 12 different hammer methods and classify them into 3
categories depending on their memory-access type, that is,
read (r), write (w), read-and-write (rw) (see two examples in
Listing 1). Based on our experimental results, we have made
4 key observations as follows.
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Fig. 4. Bit-flip rate on tested modules when different non-temporal-
based hammer methods are applied.

First, Qiao et al. [12] observe that hammer methods with
non-temporal instructions work as effectively as that with
cache-flush instructions. However, a hammer method based
on one of the observed instructions does not trigger bit
flips in some tested DRAM modules. Particularly, we test
movnti+w (identified by Qiao et al. [12]) against M0 and
M1, showing that movnti+w is as effective as clflush+r
in M1 but surprisingly induces no bit flips in M0.

Observation 3: The effectiveness of non-temporal instruc-
tion based hammer methods is likely dependent on DRAM
modules.
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Fig. 5. Bit-flip rate on tested modules when different flush-based
hammer methods are applied. The DDR3 modules of M4 and M5 are
not illustrated in the right plot as the DDR3-based platform does not
support clflushopt instruction.

Second, summarizing from all tested hammer methods
manifested in Figure 4 and Figure 5, cache-flush instructions
with memory read work better than that with memory write
while memory write are better for non-temporal instruc-
tions. Considering that non-temporal instructions do not
work consistently on each module, the cache-flush instruc-
tions are better choices.

Observation 4: Cache-flush instructions with memory read
are preferable to implement an effective instruction-based
hammer method.

mov (X), %rax | mov (X), %rax
mov (Y), %rax | clflush(X)
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Fig. 6. Bit-flip rate on tested modules when different orders of hammer
instruction sequence are applied.

... | ...
clflush (X) | mov (Y), %rax
clflush (Y) | clflush(Y)
... | ...

Listing 2. “gather” sequence (left) and “scatter” sequence (right).

Third, we re-evaluate a prior observation that the se-
quence of clflush and memory read significantly affects
bit flip for many-sided hammer [11]. Particularly, Ridder
et al. [11] find that the “gather” sequence can produce
bit flips while the “scatter” sequence cannot. As shown in
Listing 2, the “gather” sequence refers to a batch of memory
requests followed by a batch of clflush. In the “scatter”
sequence, clflush is interleaved with memory request. In
our experiments, their finding does not apply to our tested
DRAM modules. As shown in Figure 6 represented by the
spotted column, both sequences cause bit flips in multiple
modules. The “scatter” performs better on M1 and M4 while
the “gather” is better on M5, and both hardly trigger bit flips
on the other three DRAM modules (i.e., M0, M2, M3).

Observation 5: The effectiveness of the order of clflush
and memory access on RowHammer depends on DRAM
modules.

Last, memory-barrier instructions (e.g., mfence) make
sure that data is flushed to memory before subsequent mem-
ory instruction is executed, as shown in Listing 1. Cojocar et
al. [16] observe that a hammer method without the memory
barrier presents a higher ACT rates (thus a higher ham-
mer efficiency) than that with the memory barrier on Intel
server processors booting into the UEFI mode, because the
memory barrier introduces additional CPU cycles. Based on
their observation, a hammer method without the memory
barrier should generate more bit flips. However, as shown
in Figure 6 where a spotted bar is for a hammer instruction
sequence without mfence and the grey bar is for a sequence
with mfence, hammer with mfence can trigger bit flips
on every modules while hammer without mfence can only
work on half of the test modules, which might be due to
the CPU’s optimization, that is, the CPU re-orders memory
accesses for a given hammer instruction sequence without
the memory barrier and serve the accesses from the cache,
resulting in no bit flips in some modules.

Observation 6: Although memory barriers decrease hammer
efficiency [16], they can be counter-intuitively more effective
in inducing bit flips in a DRAM module.

Analyzing the hammering effectiveness in different
combinations of instructions. To investigate the root
cause behind the different hammering effectiveness, we

observe that an Intel server can be of great help as it
provides the statistics of row buffer conflicts. Specifically,
an Intel CPU has a large part outside its actual cores,
called “Uncore”. The uncore part has LLCs, PCI-express,
memory controller, etc, and provides a list of perfor-
mance counter events to monitor its performance, among
which an event called PRE_COUNT.PAGE_MISS can cap-
ture DRAM precharge events due to page misses [44].
A page miss is referred to as a “page/row buffer con-
flict” and occurs when a row buffer is open but has
a wrong row in it. Derived from this event and other
two events (i.e., CAS_COUNT.RD counts all DRAM read
requests and CAT_COUNT.WR counts all DRAM write re-
quests), another event called PCT_REQUESTS_PAGE_MISS
reports the percentage of memory requests that result
in row buffer conflicts, that is, PRE_COUNT.PAGE_MISS
/ (CAS_COUNT.RD + CAS_COUNT.WR). As RowHammer
requires accessing different rows frequently to trigger bit
flips, it results in an abnormal number of row buffer con-
flicts. Clearly, the more row buffer conflicts within a given
short period indicate more effective hammering.
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Fig. 7. A comparison of different hammer methods with regard to the
percentage of row buffer conflicts they induced every 50 milliseconds in
a given period of 5 seconds.

To this end, we leverage PCT_REQUESTS_PAGE_MISS
to analyze the different combinations of instructions that
present different hammering effectiveness. To be specific, we
use an HP Z420 Workstation with Intel Xeon E5-2660 v2 and
64 GiB ECC-enabled Hynix DDR3 installed, and download
an open-source tool5 that is built on top of Linux perf.
To evaluate the hammering effectiveness of each hammer
method, we execute each to hammer a randomly selected
pair of addresses in an infinite loop. The pair of addresses
is from different rows within the same bank to trigger row
buffer conflicts. In the meantime, this tool is launched for
5 seconds and reports PCT_REQUESTS_PAGE_MISS every
50 milliseconds, resulting in 100 values. Figure 7 shows
PCT_REQUESTS_PAGE_MISS of each hammer instruction
with a distinct memory type, followed by mfence by de-
fault (clflushopt is not supported in this microarchitec-
ture). Clearly, clflush+read has the highest percentage
of row buffer conflicts, indicating its highest hammering
effectiveness.

5. https://github.com/andikleen/pmu-tools
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Fig. 8. A comparison of different instruction sequences with regard to the
percentage of row buffer conflicts they induced every 50 milliseconds in
a given period of 5 seconds.

TABLE 5
The minimal hammer count on tested modules.

Module M0 M1 M2 M3 M4 M5
Minimal HC 110K 90K 30K 10K 260K 230K

We use the Intel server platform to analyze the impact
of mfence as well. Figure 8 shows the impact of mfence
in affecting the hammering effectiveness of clflush+read
in both “scatter” and “gather” sequences (i.e., the order
of clflush and memory access). Clearly, the hammering
effectiveness of the hammer method with mfence is much
better than that without mfence in either sequence.

4.4 Minimal Hammer Count

Kim et al. [18] report the minimal hammer count that
can induce the first bit flip across different DRAM type-
node configuration (i.e., 22.4K for DDR3, 10K for DDR4)
using an FPGA platform with REF disabled. Considering
the scheduling of memory requests and the translation from
virtual address to physical address and to DRAM internal
location, this minimal value may not be applicable to a real-
world system. We examine the minimal hammer count at
the system level. Specially, we utilize a prior TRR-fuzzing
tool [30] to find the most efficient hammer pattern (i.e.,
the one that triggers most bit flips in a given time period)
for TRR-protected DDR4 modules. However, after around
10 hours fuzzing (more than 1000 billion hammer times
in total), most of our tested modules are robust enough
that no bit flips occur. We thus regard these module’s
minimal hammer count as infinite. In our experiments, we
find only one DDR4 module’s minimal hammer count is
10K, consistent with the prior work [18], while the minimal
values in other DDR4 modules are much higher than 10K,
as shown in Table 5. For DDR3 modules at the system-level,
the minimal hammer count is 230K, which is much more
than prior reported number of 22.4K [18].

We also re-examine the minimal hammer count of the
SODIMM on both the Xilinx ML605 and Thinkpad. Specif-
ically, the respective minimal hammer count is 170 K at the
system level and 90 K at the FPGA level, validating our
observation that the minimal hammer count on DDR3 in
the system-level is much more that in the FPGA-level.

4.5 Multi-thread
Previous works spawn multiple threads for hammer to
improve RowHammer effectiveness [8], [13], [26], [27]. We
divide these works into two categories, i.e., each thread
hammers all aggressor rows [8], [13], and each thread ham-
mers some of aggressor rows [27]. We re-examine these
two categories on our test platforms. On DDR3 modules
and certain DDR4 module TRR-unequipped (i.e., M1), all
of them improve bit-flip rate as previously reported [8],
[13], [26], [27]. While on DDR4 modules that support TRR,
single-thread is much better as multi-thread hammer rarely
induces bit flips. Take M0 as an example, the bit-flip rate of
2-thread hammer in the first category is 2.8% while it is more
than 70% for the single-thread hammer. Also, all the tested
multi-thread (i.e., 2, 3, 4) hammer of the second-category
and more-thread (i.e., 3, 4) hammer of first-category do not
flip any bit. On other TRR-employed DRAM modules (i.e.,
M2 and M3), they have similar bit-flip rates as M0. This
is probably because leveraging multiple threads for many-
sided hammer will asynchronously issue memory accesses
and interfere with TRR’s sampler [30], triggering additional
REF commands issued to victim rows. A hammer thread
should carefully synchronize with others to order the whole
memory reads by the addresses in memory controller’s read
queue. We note that additional instructions required for
the synchronization (e.g., lock and semaphore) can delay
the memory reads, thus badly affecting the hammering
efficiency. Thus, for TRR-protected DRAM modules, the
single-sided hammer is probably better.

Observation 7: On TRR-protected DDR4 modules, multi-
thread hammer is not as effective as previously reported [8],
[13], [26], [27] on DDR3 modules.

4.6 Bit-flip Direction
The data scrambling feature, employed by the modern
memory controller, applies pseudo-random patterns on the
DDR data bus to minimize the impact of resonant frequency
and cold-boot attacks [24]. Particularly, a DRAM cell’s value,
visible to the software, is the XORed output of the cell’s
logical value and a pseudo-random number generated by
the data scrambling when the system boots up.

To verify whether the data scrambling is used in practice,
we perform the following analysis of the RowHammer test
results. From the collected vulnerable physical addresses,
we select addresses that are monotonically flipped from ‘0’
to ‘1’ using the inverse “RowStripe” data pattern. These
selected addresses are only mapped to DRAM anti-cells if
the data scrambling is not in place. Then we restart the
system and re-launch the test with both “RowStripe” and
its inverse against the selected addresses. The results show
that the bit-flip rate for the two data patterns is almost equal
in all the tested DRAM modules and these addresses are
flippable from either ‘0’ to ‘1’ or ‘1’ to ‘0’. Due to data
scrambling, both true-cell and anti-cell can be flipped in
both directions at the system level.

With the above conclusion, we observe that the security
guarantee of CTA [23] does not hold. Specifically, CTA
(Cell-Type-Aware) [23] employs a two-step approach for
protecting page tables from rowhammer attacks. In the first
step, CTA puts all page tables into a dedicated region of the
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physical memory. The physical addresses containing page-
table pages are higher than that of user pages. In the second
step, CTA ensures that these addresses are mapped to true
cells which can be flipped monotonically from ‘1’ to ‘0’.
In the case of a bit flip in true-cells storing a page table
entry (PTE), the new address pointed by the PTE will only
be lower than the original address, thus the bit flip cannot
change the PTE from pointing to a user page to pointing
to a page-table page. However, with the data scrambling
deployed, an attacker can bypass CTA by bit-flipping the
PTE from ‘0’ to ‘1’ and gain unfettered access to page tables.

Observation 8: Data scrambling enforced by the memory
controller breaks the security guarantee of CTA [23].

4.7 Running Environment
When the RowHammer test is running on a text-only ter-
minal environment, the number of bit flips is surprisingly
much lower than that with a Gnome Desktop environment
(other parameters are the same). Take M2 as an example, the
bit-flip rate produced on the text-only terminal environment
is less than 1% while it is almost 70% on the Gnome Desktop
environment. This unexpected case is reproducible on all
tested DRAM modules, implying that the effect of running
environment is independent on DRAM modules. Further
experiment shows that when we implement RowHammer
attack, if we run a helper thread to issue continuous memory
accesses to an area larger than the Last-Level-Cache size
(e.g., 6MB on the i3-10100), the bit-flip rate will surge. We
will explore the root cause of RowHammer effectiveness
in different running environments using some tools (e.g.,
HMTT [45]), as discussed in Sec. 6.

Observation 9: The environment where a RowHammer test
runs significantly affects bit flips: the Gnome environment is
much more effective than the text-only terminal.

5 FACTORS FROM THE DRAM SIDE

With the extended RowHammer test as the basis, we iden-
tify DRAM parameters from DRAM-side that contribute
to RowHammer. As the DRAM standards [32], [33], [34]
specify numerous DRAM parameters, we focus on DRAM
frequency, DRAM supply voltage and DRAM timing pa-
rameters (see Table 6) which are closely related to memory
performance. We select the clflush+r with mfence as the
default hammer method, “RowStripe” and its inverse as the
default data pattern, 1000K as the default hammer count and
apply the best hammer pattern to perform the RowHammer
test using single thread.

5.1 DRAM Frequency
DRAM modules have an internal clock for synchronization.
Modern Double Data Rate (DDR) DRAM uses a single-
edged clock to synchronize control and address transmis-
sions, and a dual-edged clock for data transmissions. Thus,
some data bits are transmitted on the data bus upon the
rising edge of the clock and other bits are upon the falling
edge, making the DDR DRAM channel data rate twice
its bus clock rate. DRAM frequency denotes the DRAM
channel data rate and its default value in each tested DRAM
module is shown in Table 7. The unit of a timing parameter

TABLE 6
Major DRAM parameters we examined. (“✓” denotes that the

parameter is configurable in BIOS.)

Parameters Description DDR4 DDR3
Frequency DRAM data transfer rate. ✓ ✓
Voltage DRAM supply voltage. ✓ ✓
tCL CAS1 read latency. ✓ ✓
tRCD ACT to internal read or

write delay time.
✓ ✓

tRP PRE command period. ✓ ✓
tRAS ACT command to PRE

command period.
✓ ✓

tRFC REF cycle time. ✓ ✓
tREFI REF interval time. ✓ ✓
tWR WR recovery time. ✓
tWTR_S Delay from start of inter-

nal write transaction to
internal read command
for different bank group.

✓

tWTR_L Delay from start of inter-
nal write transaction to
internal read command
for same bank group.

✓

tRRD ACT command to ACT
command delay.

✓

tRRD_S ACT command to ACT
command delay to differ-
ent bank group.

✓

tRRD_L ACT command to ACT
command delay to same
bank group.

✓

tRTP Internal RD command to
PRE command delay.

✓ ✓

tFAW Four ACT window. ✓ ✓
tCWL CAS write latency. ✓ ✓
tCCD_S CAS n to CAS n delay

for different bank group
✓

tCCD_L CAS n to CAS n delay
for same bank group

✓

1 CAS stands for Column Address Strobe.

TABLE 7
Default DRAM parameters for each modules. Frequency is in the unit of

Mega-transfer per second (MT/s). Voltage is in the unit of Volt (V).
Timing parameter is in the unit of clock cycle.

Module Freq. Volt. tRCD-tRP-tRAS-tRFC-tREFI-tWR
M0 2400 1.2 17 - 17 - 39 - 312 - 8316 - 18
M1 2666 1.2 19 - 19 - 43 - 467 - 10400 - 20
M21 4000 1.35 20 - 20 - 40 - 700 - 15600 - 24
M3 3200 1.2 22 - 22 - 52 - 880 - 12480 - 24
M4 1600 1.5 11 - 11 - 28 - 208 - 6240 - 2

M51 1866 1.5 10 - 9 - 28 - 243 - 7283 - 2

1 The module is running with Intel XMP enabled.
2 The tWR parameter cannot be configured from BIOS.

can be either nanosecond or clock cycle and the conversion
between them is decided by the frequency as follows:

nanoseconds = 2× cycles/frequency (1)
Considering that a higher DRAM frequency enables a

faster access rate to a row and might induce more bit
flips, we thus examine its effectiveness in triggering bit
flips. We only decrease the frequency to quantify its effect
in terms of bit-flip rate, as the system may not boot up
when the frequency is set larger than the default value.
As illustrated in the left plot of Figure 9, the bit-flip rate
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Fig. 9. Bit-flip rate on tested modules when frequency and different timing parameters are tuned. The right plot omits some low frequency cases
because the BIOS cannot adjust timings to keep the same memory access latency.
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Fig. 10. Bit-flip rate on tested modules when DRAM supply voltage is
tuned.

on M1-M5 monotonically decreases when the frequency is
reduced with some exception of M0, M4, M5, where the
bit-flip rate rises when the frequency drops in some cases.
This is probably because that decreasing the frequency
will increase the nanoseconds of timing parameters when
their clock cycles remain unchanged, based on Equation 1.
For these exceptions, the increased DRAM refresh interval
has a greater impact on RowHammer than the decreased
frequency. We then reduce frequency and the tREFI which
determines DRAM refresh interval, finding that bit-flip rate
reduces compared to the former as shown in the middle
plot of Figure 9, proving this conjecture of refresh interval’s
disturbance. To evade latency’s inference, we reduce DRAM
frequency and all timing parameters to keep their nanosec-
onds unchanged as shown in the right plot of Figure 9. By
doing so, the only effect on RowHammer is limited to the
data transfer rate, and reducing it monotonically triggers
fewer bit flips, because the hammer efficiency is decreased
in the fixed refresh interval.

Observation 10: Higher DRAM frequency triggers more bit
flips.

5.2 DRAM Supply Voltage

Voltage is supplied to the DRAM array and peripheral
circuits through the power pins on a DRAM chip [46]. DDR4
is specified to operate at 1.2V [34] and DDR3 is at 1.5V [32],
with a small deviation. Considering that RowHammer’s
electromagnetic coupling effect indirectly drains adjacent
cells’ charge, we investigate supply voltage’s impact on
RowHammer. Specifically, we provide the supply voltage
from their default values to the maximum safe values,
with a stride of 0.05V. For each supply voltage, we per-
form RowHammer test against each module. As shown
in Figure 10, the bit-flip rate decreases when the supply
charge increases. When victim cells are accessed, they may
be overcharged by the row buffer. Thus, it is harder for
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Fig. 11. Bit-flip Rate on tested modules when tRCD or tRP is tuned.

them to be drained by electromagnetic coupling effect to
lose enough charges and introduce bit flips.

Observation 11: Higher DRAM supply voltage suppresses
bit flips.

5.3 DRAM Timing Parameters
Besides the frequency and supply voltage, there are numer-
ous timing parameters defined in the DRAM standards [32],
[33], [34]. In this section, we focus on 17 major timing
parameters in total, which are briefly described in Table 6.
We examine 16 timing parameters for DDR4 modules and 10
timing parameters for DDR3 modules, respectively. Specif-
ically, we cannot configure tCCD_S from BIOS on DDR4
platform, otherwise, the system cannot boot up. For the
remaining timing parameters, we change each one from a
value below default to a rational maximum, most of which
is the highest value can be configured. All their values are
in the unit of clock cycles in BIOS. In the following, we sum-
marize our empirical results about each timing parameter.
tRCD/tRP. tRCD and tRP are a pair that have the same
value on DDR4 platforms, i.e., if either is modified from
BIOS, the other will be changed automatically. On DDR3
platforms, they can be updated separately. Prior works [46],
[47], [48], [49], [50] clearly demonstrate that reducing tRCD
and tRP causes bit flips due to interrupted charge sharing,
sense amplification and precharge processes before they are
completed, thus benefiting RowHammer. Our experiments
results support the demonstration at the system level, as
illustrated in Figure 11.

Observation 12: Lower tRCD/tRP contributes to
RowHammer bit flips.

tRAS. Similar to tRCD/tRP, reducing tRAS improves the
RowHammer effectiveness on almost all the tested modules,
probably due to the improved ACT rate or the reduced re-
tention time caused by partially-refreshed or non-refreshed
DRAM cells. An exception is M3 where reducing tRAS
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unexpectedly decreases the bit-flip rate that is shown in the
left plot of Figure 12. This is probably because a lower tRAS
cannot offer enough charge to M3, resulting in a weaker
electromagnetic coupling effect than that of a higher tRAS.

Observation 13: Lower tRAS contributes to bit flips.

tRFC. tRFC decides the time period of refreshing a set
of rows within a bank. Only after tRFC can the memory
controller issue a valid command to DRAM6, resulting in
an interval of no memory access. Thus, increasing tRFC is
expected to increase memory access latency and interfere
with REF, further decrease hammer effectiveness as tRAS.
The experimental results on M0 and M1 indeed validate our
expectation, shown in the right plot of Figure 12. However,
lower tRFC on M2 works the opposite, probably due to M2’s
different internal circuits and manufacturing process. The
reason why tRFC on M3 has no effect is probably because
that the value range of tRFC that M3 allows to change from
the BIOS is too narrow to affect bit flips.

Observation 14: Lower tRFC can contribute to bit flips.

tREFI. tREFI decides the time interval of DRAM refresh.
A higher tREFI prolongs the REF command interval and is
supposed to induce a higher bit-flip rate. As shown in the
left plot of Figure 13, almost all modules we tested work
as expected. The only exception is M3 where default tREFI
triggers the most bit flips compared to when it is scaled up
to 2x, 4x or down to 0.5x, respectively, which is probably
because that different TRR mechanisms are switched on
upon different tREFI.

Observation 15: Higher tREFI can contribute to bit flips.

tWR. As shown in Table 6, tCWL, tWR, tWTR_S and tWTR_L
are related to the DRAM WR command, we additionally
replace the hammer method of test with clflush+w. How-
ever, our DDR3 motherboard cannot read tWR and the
clflush+w hammer method only induces bit flips on M1

6. In fact, only the DES (Device Deselected) command can be issued
within tRFC [34].

of all DDR4 modules. From our experiments, tCWL, tWTR_S
and tWTR_L do not contribute to RowHammer statistically,
while increasing tWR triggers more bit flips as shown in
the right plot of Figure 13, different from the other timing
parameter. Higher tWR time might overcharge and punc-
ture the parasitic coupling capacitance between aggressor
and victim rows, thus opening up the victim cell’s access
transistor and leaking the charge of the victim’s capacitor.

Observation 16: Higher tWR contributes to bit flips.

Remaining Timing Parameters. By configuring each of the
remaining parameters, we did not observe a clear difference
in bit-flip rate.

Observation 17: The timing parameters in Table 6, except
tRCD, tRP, tRAS, tRFC, tREFI and tWR, contribute little
to bit flips.

5.4 Extreme Memory Profile on Rowhammer
Intel proposes XMP for system acceleration [25]. XMP has
been widely supported by memory manufacturers, serving
as an extension to standard JEDEC SPD specifications. XMP
is intended to overclock DRAM and is accessible to users
through profiles and predefined overclocking configura-
tions that are known to be stable. Unlike JEDEC, XMP is
designed for high performance and usually customized and
tweaked to the physical characteristics of the chip.

We conduct our RowHammer test on M2 and M5 that
support XMP. By default, M2’s frequency is 2133MT/s and
M5 is 1600MT/s. When XMP is enabled, M2’s frequency is
increased to 4000MT/s and M5’s is increased to 1866MT/s
with some parameters changed. Our results show that the
bit-flip rate increases significantly from less than 10% with
the default setting to more than 60% with XMP enabled on
M2 and from around 10% to more than 40% on M5, implying
that XMP is effective in inducing more bit flips.

Observation 18: The XMP feature, intended for better sys-
tem performance, might be abused for Rowhammer.

6 DISCUSSION

Our study has summarized multiple new observations on
existing and new factors contributing to RowHammer bit
flips. In this study we do not intend to explore the root
causes for such effects in an exhaustive manner. For the
following observations, we plan to find their root causes
and shed more light on RowHammer characterization from
the system level.
• In Sec. 4.7 we show that the running environment signif-
icantly affects the bit-flip effectiveness. To explain its root
cause, a possible way is to collect all the memory traces
coming from the Gnome environment and the text-only
terminal respectively (e.g., using HMTT [45], a commercial
hardware tool, to snoop on the memory bus), and perform
a detailed analysis of the collected traces.
• Sec. 5 shows that some timing parameters (e.g., tRAS,
tRFC and tREFI) do not work as expected on certain
DRAM modules and we need more low-level experiments
to explain the root causes behind these anomalies. A pos-
sible approach is to obtain and analyze the memory-access
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information by capturing DRAM commands issued to tar-
geted DRAM banks.

7 CONCLUSION

Previous studies have identified several factors that con-
tribute to RowHammer bit flips such as data pattern and
hammer method. As these works mainly relied on FPGA-
based test platforms to characterize RowHammer, their
findings on the identified factors may not work in a real-
world computing system where the OS and the memory
controller inevitably interfere. In this paper, we presented a
system-level empirical study on the key factors that affect
the RowHammer effectiveness. Our study reported some
new observations from both the software and DRAM side,
which we believe can benefit future RowHammer research.
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