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ABSTRACT
QR-code mobile payment becomes increasingly popular, being of-
fered by major banks (e.g., ICBC) and payment service providers
(e.g., PayPal). Unlike mobile payment solutions provided by hard-
ware vendors (e.g., Apple Pay and Samsung Pay), QR code payment
schemes do not rely on any hardware support and can therefore
be easily deployed. However, the security guarantee of the new
scheme is less clear: in the absence of hardware protection, users’
digital wallet can be vulnerable to an OS-level adversary, who could
steal her secret for generating payment tokens.

We �nd that the physical features of a phone’s screen can en-
hance the security protection of this QR-code payment, serving as a
second-factor authentication. Due to manufacturing imperfections,
the luminance levels of the pixels on the screen vary across the
screen’s display area, which can be used to uniquely characterize
the screen. This physical �ngerprint cannot be stolen even when
the OS is fully compromised, since the adversary cannot observe
the physical features of the screen.

However, screen �ngerprinting could also undermine the mo-
bile payer’s privacy, as less trusted merchants could use it to track
customers and infer their purchase history and preferences. In this
paper, we propose a new authentication solution that anonymously
�ngerprints mobile screens. The approach, called AnonPrint obfus-
cates a screen, which hides its �ngerprint from the merchants. In
the meantime, the payment provider, who shares a secret with the
payer, is able to reconstruct the mask and authenticate the payer
through her obfuscated �ngerprint.
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1 INTRODUCTION
Major payment service providers, including PayPal, Alipay,WeChat
Pay (Chinese providers with hundreds of millions users) and ICBC
(the largest bank in the world), have started to allow their customers
to generate QR code on their phones using the secret of their digital
wallet to do payment (Section 2), even in the absence of communi-
cation with the services. This kind of payment is extremely popular
now and is carrying transactions worth trillions of US dollar last
year [4]. Such an o�-line mobile payment scheme features a design
oriented towards ease to use. A problem here, however, comes from
the limited understanding of its security guarantee: unlike other
payment solutions, like Apple Pay and Samsung Pay, the QR-code
payment does not have hardware protection and therefore is vul-
nerable to an attack on the mobile OS. What’s worse, a recent work
discovered that an adversary can sni� a QR code from one mobile
device using a malicious app, without breaking the OS, and use it
at another place, causing monetary loss to buyer or merchant [8].

Mobile display identi�cation. Our study shows that this emerg-
ing payment solution can actually be better protected by leveraging
the physical features that characterize the screen of the payer’s
smartphone. More speci�cally, previous works �gured out that
each screen has its unique physical features that can be detected
by specialized devices. Speci�cally, its back light that produces lu-
minance, which cannot be made uniform across all pixels on the
screen during the manufacturing process [23]. Such features can
also be picked up by a close-in camera in lower accuracy, as the one
used in a commercial POS scanner, during code scanning1. Iden-
ti�cation of such a �ngerprint, however, is nontrivial, due largely
to the presence of the projective distortions resulted from random
scanning angles, which may cause the same screen look di�erently
in di�erent scans. We developed a new approach that corrects such
distortions by projecting the image of a screen to a �xed observing
plane and then reliably extracting the identifying features from the
projection in a highly e�cient way (Section 3).

Convenient and reliable screen �ngerprinting has signi�cant
security and privacy implications, particularly for the o�-line pay-
ment. The unique physical features of the screen can serve as a
natural means for a second-factor authentication: even when the
user’s secret (e.g., the secret key for generating QR codes) is stolen,
even when her phone has been fully compromised by the adversary,

1Some high-end scanners use laser to light up the code, but they also include a camera
to shoot the code.
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still no one can perform an o�-line payment transaction success-
fully without accessing her physical device or synthesizing the
features of her screen, which we found is hard in the absence of
a high-resolution picture of the screen. On the other hand, the
screen �ngerprint of the payer’s phone makes her harder to stay
anonymous during her purchases, because the vendor could take
advantage of the opportunity when scanning the QR code displayed
on her phone to capture the �ngerprint from the screen. This in-
formation, once exposed to a third party, such as an advertising
(ad) company, can be used to link the same device’s transactions
across di�erent stores, enabling the party to track the customer’s
purchase activities.

Anonymous screen �ngerprinting. An intriguing challenge
here is how to enable service provider to utilize the screen to en-
hance security protection while preserve the privacy at the same
time. This is by no means trivial: again, in the payment scenario,
we need to hide the physical features of one’s display to the POS
scanner, which is under the control of the vendor, but somehow
communicate them to the payment service provider in a reliable
way; also the operating system is considered to be untrusted and
any protection working here needs to be built on top of the screen’s
physical properties. In our research, we found that all these aims
can actually be achieved, through a carefully designed technique
called AnonPrint.

AnonPrint is designed to use randomly generated visual one-
time masks (a pixel pattern with dots set to various brightness
levels) to obfuscate the distinguishable features of a user’s screen.
Such a mask is designed to hide the physical properties of a screen,
and meant to be indistinguishable from a real �ngerprint. In the
meantime, for the party that knows the mask, such as the payment
service provider, it can still verify whether the features collected
from the protected screen are indeed related to the authorized
device. More speci�cally, our approach randomly creates a smooth
textured pattern for each transaction (which is also known to the
provider), and displays such a pattern as the background of QR code
to disarrange the brightness of a screen, in line with its real-world
physical properties: neighboring dots are correlated and the levels
of brightness change smoothly. Leveraging our feature extraction
technique, such an obfuscated feature can still be reliably captured
by the scanner and delivered to the provider. The provider can then
re-obfuscate the �ngerprint of the authorized device with the same
mask, and run a correlation test on both the synthesized �ngerprint
and the one reported (by the vendor) to determine whether it comes
from the authorized party.

We implemented this technique and evaluated it over up to 100
smartphones. Our experiment results show that these devices can
be reliably di�erentiated from each other with or without random
masks. Also, once the masks were applied, we found that the cor-
relations between the �ngerprints extracted from the same device
(under di�erent masks) dropped to the level of those between two
di�erent devices, indicating that the attempt to establish a link
between di�erent payment transactions, as mentioned earlier, will
fail.

Contributions. The contributions of the paper are outlined as
follows:

• New discovery. We found that screen luminance unevenness
can be used to uniquely �ngerprint a device and developed
a new technique that reliably and e�ciently extracts such
features from each screen.

• New technique. We analyzed the security and privacy im-
plications of the screen �ngerprinting, under the settings
of o�-line mobile payment, and highlight the privacy risk
of correlating di�erent payment transactions and the secu-
rity opportunity of using the features as a reliable means
for a second factor authentication. Further, we developed
an innovative technique to anonymously recover the �nger-
print from each device, protecting the user from the curious
vendor, as well as the OS-level adversary.

• Implementation and evaluation. We implemented our design
and evaluated it over a large number of real-world smart-
phones. Our experiment results show that the new technique
can e�ectively protect the user from both untrusted vendors
and the untrusted OS during an o�-line payment.

2 BACKGROUND
In this section, we introduce the background about the uneven
brightness property of screen and o�-line QR payment, and then
present the adversary model of our research.

2.1 Screen

Brightness unevenness. Key to our screen �ngerprinting tech-
nique is the observation that there are subtle di�erences in the max-
imum luminance of the pixels at di�erent locations of the screen.
Taking LCD screens as an example (see Figure 1), the light emitted
by the back light unit has to come across many layers to get adjusted
and �nally perceived by human. Due to the imperfection in the
screen manufacturing, which could bring defects to its components,
the light from the back light unit can be spread unevenly over the
screen, making the border darker than the center and causing the
Mura e�ect. The transparency of the polarizer varies at di�erent
parts of the screen, and therefore the default angle for bending the
polarized lights can be varied as well when no voltage is applied.
Although on a quali�ed product, all such subtle defects are barely
observable to human eyes, they can however be reliably identi�ed
by a camera, as observed in our study.

Figure 1: Typical structure of a LCD screen.

Non-LCD screens. Not all smartphones have LCD screens. As
a prominent example, Samsung products typically use AMOLED
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panels that have no back-end light source, and instead, they are
built upon organic light emitting diode, with every pixel emitting
lights of di�erent strengthes. Those panels also have luminance
unevenness, which can be picked up by the same technique we
developed for analyzing screens, as shown by our evaluations.

2.2 O�-line QR Payment

Figure 2: A POS supporting QR code payment.

QR-code payment is gaining popularity in recent years mainly
because of its ease of use. When a buyer checks out her purchases,
she only needs to run a wallet app and clicks on its “pay” button to
show a one-time QR code on the screen , and presents the screen
close to the camera of the vendor’s POS machine for scanning.
After the vendor enters the right amount the buyer needs to pay,
the scan starts and the POS machine will notify both parties if
the transaction is approved by the payment service provider (see
Figure 2 for POS and [2] for more details).

Payment transaction. To use the payment scheme, the payer
needs to set up an account with the payment provider (e.g., Alipay),
install its wallet app and log in her account through the app when
she is ready to pay. The app contains a piece of secret downloaded
from the provider for generating one-time tokens.

When the payer initiates a payment transaction (by pressing the
payment button of the wallet app), the app proceeds as illustrated
in Figure 3 to complete the transaction. Speci�cally, it uses the
current time, the user ID and the stored secret as inputs to generate
a random token (usually using HMAC), which is then encoded into
a QR code to be shown on the payer’s screen. After being scanned
into the POS system, the token is extracted from the scanned image,
together with other transaction information like the total amount
and currency type, and sent to the payment provider.

Secret

Time

User ID

Algorithm
Token Token

APP

Token

POS Server

User ID DB

Time

Secret

Algorithm

Compare

Token
Accept/Reject

Figure 3: O�-line QR code payment �ow chart.

The provider, upon receiving the token and transaction informa-
tion, recovers from the token the user ID and uses the information
to retrieve the stored secret of the payer, in order to verify the token.
When the token is valid and still fresh (within a given time frame),
the provider checks whether payer’s fund is su�cient, and noti�es
the vendor of the acceptance of the payment.

Threat of OS-level and app-level attack. Compared with other
mobile payment schemes, however, the QR code payment is limited
in its capability to defend against OS-level adversary. All o�-line
payment schemes rely on the secret stored on the mobile device,
which is often protected through hardware means. For example,
Apple Pay uses the secure element to store payment secret and
runs the payment process within its secure enclave. Samsung Pay
leverages its KNOX (built upon top of ARM trust-zone) to protect
the payment information in its secure element. They can all mitigate
the threat from the OS-level attackers, since the payment secret
stays within the hardware component the OS cannot directly access.
For the payment schemes not provided by the device manufacturers,
like PayPal, Alipay, etc., the hardware level protection is not in place
and can therefore only trust the OS to protect the payment process.
Once the OS is compromised (particularly on rooted or jail-broken
devices), the adversary can then get access to the payment secret to
generate legitimate payment token to steal from the victim. Actually,
during our research, we analyzed AliPay on a jail-broken device
and successfully extracted the secret.

Even if the mobile OS is not tampered, a recent study showed
that a malicious app is able to extract payment token during the
o�-line payment scenario [8]. In particular, the re�ection of the QR
code will appear on the glass of POS scanner when user’s mobile
device comes close, and the malicious app can sni� it by taking a
picture of the scanner glass.

2.3 Adversary Model
An o�-line payment transaction involves four actors: the payer,
the OS, the vendor and the payment provider. In our research, we
assume the provider to be trusted and collaborative, willing to
protect the payer’s account and her transaction privacy, while the
software and the vendor are considered to be less trusted, each with
di�erent capabilities. However, we do not assume they collude.

Curious vendor. More speci�cally, we consider that the vendor
is curious but honest. He can save a photo of the screen of payer’s
phone, during the QR code scan, by reprogramming2 or customiz-
ing his scanner. However, we do not assume that he can acquire the
secret within the payer’s phone, including the payment secret and
other information for generating the protection for the screen (Sec-
tion 4). We neither assume he can get or set the internal status of
the POS (scanner is outside the POS and is controlled by the vendor).
In the meantime, we assume that he does not attempt to directly
steal money from the payer, an attempt that can be detected by the
provider (e.g., overcharging the payer for the purchased item).

Instead, the malicious intent of the vendor is to bene�t from
tracking or helping a third party track the payer’s purchase activi-
ties. It is undoubted that purchasing activity logs are valuable to

2Some scanner manufacturers provide programming guide to help vendor modify the
logic of the scanner[3].

79



ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Zhe Zhou et al.

merchants who are eager to know what their customers bought, re-
turned and what they might be interested. Starbucks, a well known
Apple friendly brand, hesitated to support Apple pay before 2016
because Apple pay is too anonymous [1]. On the other hand, we
assume the input to the tracking technique here is limited to the
screen image containing QR code (e.g., we assume the vendor does
not take a picture of buyer and use it for tracking).

Note that there are situations where the payment is done overtly,
without hiding the payer’s identity. Prominent examples include
purchasing through membership card. In these cases, the identity
information proactively provided by the payer enables the vendor
to not only link her transactions together across di�erent stores
within the same organization, but also connect her behaviors across
organizations, should the vendor decide to sell the identity with
purchase information to a third party like the advertiser, which
results in unexpected privacy leakage (imagine a restaurant learns
what you’d like to order according to your Walmart’s history) .
However, the o�-line scheme like the QR pay is designed to provide
the payer option to remain anonymous.

Untrusted OS. The OS in our model is untrusted, which can
be completely under the control of the adversary who not only
can get access to the secret of the victim’s wallet but can also
learn other information, for example, the secrets for creating screen
masks (Section 4). Further, the adversary also tries to acquire the
�ngerprint of the device, though she cannot directly observe it from
the software of the device.

As mentioned before, the QR code payments like the one used
by Paypal do not have a secure container for the payment secret in
the phone, and only ask the OS to protect the secret, so when the
OS is compromised, everything is exposed to the adversary, except
the hardware features of the screen that cannot be directly “seen”
from the software stack of the system. With the wallet secret, the
adversary can generate a valid token and QR code (Section 2.2), by
using the same algorithm (which we assume is public) and time
information, for o�-line payment.

Our assumption of untrusted OS is practical for the mobile pay-
ment scenario. Not all Android phone manufactures are prompt in
pushing updates to their users, resulting in a fragmented Android
eco-system with a lot of vulnerable devices open to attackers. Re-
cent attacks also showed that attackers can easily get the token of
the payment [6] with the help of vulnerable OS components.

3 SCREEN FINGERPRINTING
Our research shows that unique physical features of smartphone
screens can be used to identify them and defend against adversary
who has even obtained the payment secret. Extraction of these
features, however, is nontrivial, due to the impact of projective
distortions introduced when the screen is scanned by the camera.
In this section, we present a technique that addresses the issue
and �ngerprints a screen using the image that can be conveniently
taken during a payment scan.

3.1 Overview
Firstly, we brie�y show how the screen �ngerprint protects users
from secret key leakage if only the device is not physically acquired
by the attacker. At the registration phase, a photo of the screen

should be securely uploaded to the server, with which the server
can extract a piece of �ngerprint. Every time a transaction happens,
the server not only veri�es if the QR code token is correct, but
also compares the �ngerprint from the scanned photo against the
one collected at the registration phase. The transaction can only be
approved if the QR code and the �ngerprint are both correct.

Our scheme does not protect users whose OSes are compromised
before registration. But if the registration phase is safe, even when
the OS is compromised thereafter, the attacker will fail to launch the
attack. When the attacker controls OS, she can acquire the secret
key for QR code generation with the acquired privilege. However,
there is no way for her to acquire the authentic screen �ngerprint,
so the check of �ngerprint comparison will fail and the server will
be noti�ed.

3.2 Photo Extraction and Correction

Figure 4: Fingerprint visualization.

Figure 4 visualizes the luminance �ngerprint of a screen, which
is illustrated through distortion correction, blurring and contour
drawing. This �ngerprint can be picked up by the POS camera when
it is positioned at a right distance and angle toward the screen.What
is expected is that the screen is in parallel with the camera lens,
with its center right under the camera. In practice, hardly can this
be done perfectly by a payer, as illustrated in Figure 2, even when
a POS system is calibrated to identify the QR code shown on the
screen (with the code boxed by a square visualized to the party
who scans). As a result, the images snapped by the POS camera are
often distorted, which brings in the trouble to e�ective extraction
and comparison of �ngerprints (distortion may make one phone
similar to another). Following we elaborate how this challenge is
addressed in our research through proper corrections.

Distortion correction. The picture of a screen taken by POS can
be viewed as a projection from the screen plane to the camera per-
spective plane (as they are not parallel), with an unknown angle
(see Figure 5). Most important to the distortion correction is to iden-
tify the angle. For this purpose, we come up with a new approach
that leverages the QR code on the screen as a reference to realign the
whole image through a projective transformation, which turns out
to be very e�ective in recovering the distorted screen �ngerprint.

Speci�cally, we consider that the phone screen sits on a display
plane (D). When its picture is taken, the screen image is projected
from D to a shooting plane (S), which is distorted. Our goal is
to project the image from S to a correction plane C parallel to D,
through a projective transformation (T ).

Solving a projective transformation that perfectly reverts the
distortion requires the positions of at least 4 di�erent points on S
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Figure 5: Projective distortion illustration. The three images
are considered to be on three planes (D, S andC) respectively.

Original      1) 2)      3)

Position Marks

Alignment Mark

Figure 6: Bullseyes locating algorithm.

and their counterparts on C . It turns out the four “bullseyes” of QR
code can be treated as the 4 markings. The “bullseyes” (see Figure 6)
are used by the decoding program to locate the QR code, including
three positioning markings to identify the direction of the code,
and an alignment marking to help with orientation. Speci�cally,
we �rst extract the coordinations of these “bullseyes” on S using
standard QR decoding algorithm and then map them to the middle
of a rectangle (0, 0) to (1800, 1080) ofC , to obtain the transformation
parameters.

The above approach works when the coordinates of all four
“bullseyes” are correctly detected. However, these coordinations
cannot be obtained when QR decoding algorithm fails. To extract
�ngerprint in this case (for multiple scan cases described later),
the coordinations are inferred from the screen picture using the
algorithm described below:

(1) Our approach extracts rectangles by identifying all quadri-
laterals from the picture and removing those quadrilaterals
unlikely to be foursquares. Tools like regionprops ofMatlab
Image Processing Toolbox can achieve this goal.

(2) Within the rectangles, our approach further selects the triples
with their centroids forming an isosceles right triangle (ap-
proximately, due to the distortion). Oftentimes, this process
will discover a triple that consists of the top-left, the top-
right and the bottom-left bulleyes, as illustrated in Figure 6
middle.

(3) Finally, we look for a quadrilateral (the alignment mark)
whose centroid is approximately on the mid-perpendicular
of the right angle side of the isosceles we just found. The
quadrilateral should be moderately far from the right angle
vertex, which is shown in Figure 6 right.

Screen image recovery. Using the coordinates of the four bullseyes,
we can perform projective transformation to project the screen
image from the shooting plane S to the corrected plane C with
distortion eliminated. In essence, all the pixels within the image

on S are aligned to C while their relative location to the four mark-
ings are preserved. This process can be done using the standard
projective transformation solving method [5].

3.3 Fingerprint Extraction & Comparison

Fingerprint extraction. To get a clean �ngerprint from the trans-
formed picture, we �rstly applied noise cancellation techniques.
We applied a radius 2 gaussian �lter to the photo to remove the
high frequency noise. Then we extract the luminance level after
grayscaling the photo.

After that, a �ngerprint of a screen is generated as a matrix of the
luminance for each pixel (0 to 255). To visualize the screen features,
we use contours to connect the pixels with similar luminance levels
and then run Gaussian Blurs to smooth out the images. The right
image in Figure 4 is the �ngerprint for the screen image on left.

Fingerprint comparison. Once the a �ngerprint it extracted,
we need to compare it with other �ngerprints to determine if the
screen has been seen before. For this purpose, we utilize the Pearson
product-moment correlation coe�cient to measure the similarity of
two �ngerprints. The correlation coe�cient is chosen since it mea-
sures the distance between two vectors based upon the similarity of
the relations among the elements within each individual vector. This
allows us to overcome the di�erences in the absolute brightness
values for the same pixel observed under various light conditions.
Speci�cally, given two �ngerprints, which are two matrices with
each element being either the brightness level of a pixel (100 to
255) or of 0 if the value of the element is removed during the dis-
tortion correction (border or virtual button) phase, we �rst convert
these matrices into two vectors � and � 0, through concatenating
their rows together, sequentially. Then we remove the elements
from individual positions within � and � 0 if at least one of them
in that position is 0. After that, our approach compares � and � 0

by calculating the Pearson product-moment correlation coe�cient.
The result needs to be adjusted by the di�erence in the numbers
of “e�ective elements” in these two vectors, that is, those not being
removed (non-zero in value). This is important because the di�er-
ence in vector lengths should also be taken into consideration in
the similarity measurement, but our previous steps dropped this
information. Let d be such a di�erence between the two matrices
and e be the total number of non-zero elements copied to vectors.
The similarity between two �ngerprints, �, is calculated as follows:

� = (1 � d

e
)CorrCoe f (�,� 0)

The similarity value is then compared to a threshold to determine
whether the two �ngerprints belong to the same phone.

4 ANONYMOUS SCREEN AUTHENTICATION
While our �ngerprinting technique could protect the user against
adversary who attempts to steal payment token and spares it with
another device, it also enables unwanted user tracking. In this
section, we describe our design of AnonPrint, which obfuscates a
screen with a digital brightness mask to prevent the linking across
payment transactions, while still enabling an authorized party to
authenticate the owner of the screen.
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Figure 7: Overview of AnonPrint.

4.1 Overview
Figure 7 illustrates the framework of AnonPrint and the payment
process that supports this anonymous screen authentication. The
framework is built upon the existing o�-line payment system, with
only moderate changes made to the wallet app, POS scanner and
the service on the payment provider side. More speci�cally, the
payer �rst needs to submit the original screen �ngerprint of her
device to the payment provider when she opens an account. The
wallet app is modi�ed to synchronize a secret random seed with the
provider, which could be achieved through hashing the time for the
payment (as encoded in the QR code) together with a shared secret
using a cryptographic hash function (e.g., SHA-256). This seed fur-
ther bootstraps a pseudo random number generator (PRNG) each
time when the wallet app needs to provide each party a sequence of
random numbers for mask generation. This mask is displayed as the
background for displaying the QR payment token, from which the
POS scanner extracts the obfuscated screen �ngerprint in addition
to decoding the QR code and passes the information to the payment
provider. Upon receiving the �ngerprint and the payer’s token, the
provider retrieves the shared secret and the original screen �n-
gerprint using her claimed ID. Then, the same mask used by the
payer is re-constructed and together with the original �ngerprint,
serving as inputs for synthesizing a new obfuscated �ngerprint.
This �ngerprint is compared with the one from the payer’s screen
and the transaction can be approved when their similarity is above
a threshold and other security checks are made. Following we elab-
orate how the screen is masked, how the �ngerprints are compared
and our analysis of the security properties.

4.2 Screen Obfuscation
Our idea to obfuscate a screen is to create a digital luminance
pattern, called mask, to hide the screen’s hardware �ngerprint for
each payment transaction. Such a mask is automatically generated
by a digital wallet app, based upon a PRNG seeded with a random
number synchronized with the payment service provider, so the
provider can also generate the same mask to authenticate the payer.
The mask needs to be realistic, similar to a real �ngerprint in terms
of the distribution of brightness levels. Further it should work on
not only a physical screen but also its image, since the latter is all
the provider has about the payer.

Mask generation. A screen �ngerprint is characterized by a
smooth luminance change observed across neighboring pixels: the
luminous intensities of these pixels, when their inputs have all been
set to the maximum (255) 3, can be slightly di�erent, due to their
physical features; such a di�erence is minor between the pixels
close to each other, since any large, abrupt change is likely to dis-
qualify the whole product. To obfuscate this hardware �ngerprint
but maintain a screen’s realistic looking, it is important that the
mask generated will fully preserve this property. Here is how we
do that in our research:

(1) Random zone selection:Our approach �rst produces a 180*108
pure white (with all pixels set to 255) image as the back-
ground and randomly selects from the image 20 mutually
disjoint zones, each with a size of 16*16.

(2) Dot darkening: From each zone, we randomly choose 3 pixels
and set their pixel value to a random number between 0 to
100.

(3) Smoothing: For each zone, AnonPrint blurs it using Gaussian
Smoothing, an image processing technique that, intuitively,
“smoothes out” the dark color of the selected pixels to its
neighboring pixels. In particular, their values are elevated
by proportionally reducing the values of their neighboring
pixels, based upon their distances to these pixels, according
to the Gaussian distribution. The radius of the Gaussian
smooth �lter is set to 10 in our implementation.

(4) Resizing: The mask image is resized and scaled to a 1800*1080
matrix whose values range from 220 to 255. The size is iden-
tical to the original �ngerprint, so that it can mask the whole
area to create �ngerprint. Besides, the resizing also implies
smoothing.

Mask registration. To apply the technique to the QR-code pay-
ment, each user �rst need to register to the payment provider with
an image of her unprotected screen when all pixels are set to the
maximum gray-scale. This can be done by taking a close-in picture
of the screen using a second device (another phone or a laptop), or
pay without mask at a trusted vendor. The secret used by device’s
PRNG is also transmitted to they payment service in this stage.

3All payment apps we surveyed change the luminance level to maximum when the
QR payment UI is displayed, to increase the success rate of QR decoding.
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Figure 8: The brightness attenuation model.

4.3 AnonPrint Veri�cation
During the payment, an image of a masked screen is taken to au-
thenticate the payer. This is done on the payment service provider’s
side by reconstructing the mask using the shared secret, and then
obfuscate the �ngerprint for comparing with the image from the
vendor. Most challenging here is how to build the obfuscated screen
�ngerprint, which, due to the vendor’s lack of access to the physical
device, can only be synthesized from the original �ngerprint and
the mask.

Screen attenuation model. To synthesize an obfuscated �nger-
print, we need to understand how a pixel’s brightness is attenuated
when displaying the content with various pixel gray-scale value.
For this purpose, we selected 10 areas from a screen, each of 10*10
in size, and continuously reduced the value of each pixel in the area
in a controlled environment, by one at a time, from 255 to 220. Each
time we took a picture of the screen and measured each pixel’s
observed luminance value. Figure 8 illustrates the normalized lumi-
nance levels (in terms of pixel value in photo) observed from the
images vs. the pixel values we digitally set for the screen.

As we can see here, the observed brightness of a pixel attenuates
approximately linearly with its decreased pixel value (0 for totally
dark and 255 for pure white), which can be modeled by the attenua-
tion function: � = 1�k(255�x)/255, where k is the contrast factor,
x is the input pixel value and � is the normalized luminance level
observed from the photo. A challenge here is how to determine
k , which actually varies for di�erent phones and even di�erent
shots of the same screen, due to the contrast level set for individual
phones and most importantly the scanning camera’s automatic
adjustment of its ISO sensitivity according to the ambient light.
Following we describe how to synthesize an obfuscated �ngerprint
using the model, particularly how to �nd k .

Fingerprint synthesis. Our attenuation experiment shows that
there is a linear relation between observed luminance intensity and
pixel gray-scale value. This allows the payment service provider to
synthesize the obfuscated �ngerprint using the original screen’s
�ngerprint and the reconstructed mask. Let the mask matrix be X
and the original �ngerprint matrix be f . The synthesized �ngerprint
f 0 can be calculated by f 0 = f � (1�k(255�X )/255). The question
here is how to determine k , which varies across di�erent scans.

We calculate k in our research based on the observation that
the �ngerprint synthesized using a right k should have a higher

similarity with the �ngerprint fo extracted from an authorized
screen, compared with that based upon an incorrect k . So, �nding
k can be modeled as the following optimization problem:

k = argmax
� 2D

�(f � (1 � �(255 � X )/255), fo )

s = �(f � (1 � k(255 � X )/255), fo )

Here� is the correlation coe�cient mentioned in Section.3 andD
is the range of k . To �nd outD, we recorded the optimized k using a
large range [0, 10] over 100 images taken from 50 phones in common
environment. The experiment shows that under normal ambient
light situations (as under the POS machine), k falls between 0.25
and 6. Further given an image of an authorized screen, a mask the
screen wears and its original �ngerprint, the similarity s between
a synthesized obfuscated �ngerprint and that extracted one from
the image is found to be approximately unimodal across possible k
values: i.e., increase �rst and then decrease. Therefore, the provider
can run a ternary search to �nd thek within [0.25, 6] that maximizes
the similarity s . If s goes above the threshold (Section 5), the device
is authenticated, otherwise, it fails.

In a rare case when a legitimate screen fails to be recognized by
the provider, service provider can ask the payer to enter a strong
password (directly into the POS system) for the authentication.

Multi-scan. A single scan on today’s POS system typically yields
a low recognition rate, typically below 50%. What happens in real
world is multi-round, consecutive scans until a frame can be picked
up by the decoder, and the message decoded from QR code passes
the error detecting code checks. This property is used in our design
of AnonPrint, for the purpose of achieving a high security guaran-
tee for the second-factor authentication without undermining the
utility of the technique. To explicate the approach, we �rst need to
de�ne False Rejection Rate (FRR) and False Accept Rate (FAR), as
follows:

FAR =
number o f accepted unauthorized f in�erprints

number o f attack attempts

FRR =
number o f f ailed authorized f in�erprints

number o f authentication attempts

Given an FRR of � and an FAR of (1 � �) for a single scan (i.e.,
showing a single mask), after N independent rounds, with each
round a di�erent mask shown on the screen, we are expecting a
�nal FRR of �N (that is, rejecting a �ngerprint when all N rounds
fail), and FAR of (1 � �N ) (that is, accepting a �ngerprint when
at least one round succeeds). AnonPrint can be designed to utilize
such a multi-round scan to strike a balance between the overall
FAR and FRR. Speci�cally, during a QR scan, the wallet application
continuously generates N di�erent masks and display them as a
background for the same QR code one after another, each lasting a
�xed time interval. To help the scanner di�erentiate these masks,
each mask is labeled by a mark — a small dark square with 10*10
pixels — displayed at a given position on the screen. The position
of the square signals the scanner that a di�erent mask is in use. In
this way, totally N images will be sent to the payment provider,
which accepts the transaction if at least one of them is considered
to match the payer’s screen �ngerprint.
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5 EVALUATION
In this section, we report our evaluation against AnonPrint, on
the unlinkability it can achieve and its accuracy in distinguishing
di�erent devices.

5.1 Experiment Settings
Data collection. Due to the absence of the programmable POS
scanner and source code of the o�-the-shelf wallet app, we can-
not implement and evaluate the whole payment process involving
AnonPrint. Instead, we focus on understanding the security proper-
ties of obfuscated screen �ngerprints. For this purpose, we collected
a set of smartphones from a group of volunteers for our experiments,
which come from major phone manufacturers, as shown in Table. 1
(To protect their privacy, detailed information about their devices
were not recorded.). All 100 the phones are used to understand the
e�ectiveness of the screen �ngerprint in identifying devices (see
Section 5.2). 50 of them are used to evaluate the anonymity pro-
tection (4 are removed later because of stains or cracks on screen)
and the e�ectiveness of AnonPrint (4 are removed accordingly)
separately. During the experiments, we use an iPhone 6s to capture
images for screen �ngerprinting. Also, we implemented an Android
application that displays QR code and obfuscates a screen using
masks derived from given random numbers for anonymous pay-
ment (for iPhones, images are generated by a computer and sent
to phone for display). To collect the �ngerprints from each device,
we �rst display on each screen a QR code without obfuscation, and
then continue to show 5 di�erent masks on the screen with the
same code. Each time, we take a picture from the screen and use
the image to extract �ngerprints, masked or not.

Table 1: Statistics of the Brand of Participants’ phones.

Brand iPhone Samsung Others (Huawei,
Oppo, etc) Total

Quantity 44 17 39 100

Computing platform. We use a desktop computer to simulate
the POS-side �ngerprint extractor and provider-side �ngerprint
authentication server. The desktop runs on a machine with Intel
Core i5 3.2GHz CPU, 12 GB memory and uses Ubuntu 14.04 oper-
ating system. The analysis routine (mainly image processing and
comparison) is developed using Matlab 2015b. We also implement
the obfuscation mechanism on a Nexus 6 phone, with 3 GB memory.

5.2 Fingerprint Accuracy
We �rstly evaluated if screen �ngerprint can be used to di�erentiate
devices. Figure 9 illustrates the distributions of the �ngerprint sim-
ilarity, �, over 40 images taken from 20 phone screens, two images
per screen. The blue solid line represents the similarity between
the images of the same phone, and the red dots are for those be-
tween two di�erent phones. As we can see from the �gure, rarely
does the cross-phone similarity go above 0.9, while self-similarity
stays above 0.95 most of the time. So we choose 0.90 to 0.95 as the
threshold range for determining whether two �ngerprints indeed
belong to the same phone.
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Figure 9: PDF of �ngerprint similarity.

To validate the threshold, we collected 160 images from 80 ad-
ditional phones (still two images per phone) for testing. For the
images, again we calculate the similarity and the self-similarity for
each of them, and further link two images together if their similar-
ity goes above the threshold th, in an attempt to understand the
feasibility of using the �ngerprints to authenticate or track devices.
This result is then compared with the ground truth (i.e., whether
two images indeed come from the same phone), to identify the
percentage of the images that have been correctly linked to their
counterparts, which we call coverage. In the meantime, we also
inspect each image to �nd out how many other images it is similar
to (with a similarity above the threshold).

The study shows that, when th is set to be 0.93, the coverage
reaches 96.3%, but on average an image is linked to 2.195 images,
indicating that at least one another device is confused with each
phone, on average. We can further raise th to 0.945. In this case,
the coverage descends to 88.75% while incorrect links per image
drop to 0.070.

From the service provider’s perspective, with a 0.93 th, 96.3%
of the time, authentic users can pass the authentication correctly
while one 1 out of 160 adversarial trails may succeed. The rate can
be further reduced to negligible 0.07% with 7.5% more failed normal
cases. From the vendors’ perspective, they can correlate 96.3% of
their customers’ transactions together, though may also incorrectly
bring another customer’s transaction to one’s pro�le. This could
still be acceptable if the vendors use the linked transactions for
purchasing preference mining and targeted advertisements. This
indicates that for 88.75% of transactions, the vendors can accurately
identify other transactions from the same customer, by simply
looking at the features of her screens.

5.3 Anonymity Protection
We then evaluate the protection provided under the masked sce-
nario. To understand the anonymity achieved by AnonPrint, we
conducted an experiment to evaluate how likely a curious adver-
sary (i.e., the vendor) can correctly link two obfuscated �ngerprints
together. Speci�cally, we collected 2 masked screens from each
of the 46 phones and analyzed the similarities of their obfuscated
�ngerprints under the same phone and across di�erent phones.

E�ectiveness of obfuscation. Like the experiments in Figure 9,
we compute the pairwise similarity of the two obfuscated �nger-
prints for each phone, as well as that for di�erent phones. Compared

84



Beware of Your Screen ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

0 0.2 0.4 0.6 0.8 1

Similarity

0

0.5

1

1.5

2

2.5

3

3.5

P
ro

b
a
b
ili

ty
 D

e
n
si

ty

Self Similarity

Mutual Similarity

Figure 10: PDF of �ngerprint similarity (after masking).

with that of unprotected screens (Figuree 9), the distribution of the
self-similarity here has changed signi�cantly, moving towards that
of the mutual similarity (for two unrelated phones). It is clear from
the �gure that the chances of �nding two similar �ngerprints from
the same phone become much lower. Meanwhile, compared with
the distribution in Figure 9, the distribution of the mutual similarity
is also slightly a�ected by the obfuscation, moving towards that
of the self-similarity. As a result, these distributions become less
distinguishable, which makes the customer tracking di�cult: the
vendor is left with the option of either choosing a large th to trace
a very small number of users with reasonable accuracy or a smaller
th to trace more users with a much higher error rate. Regardless of
the choice, the anonymity for a single user is signi�cantly elevated.

The anonymity protection of Anonprint can be quantitatively
measured by the ratio of the common part of the two similarity
curves. The common part occupies 69.4% of the two curves with the
protection of Anonprint (Figure. 10). In contrast, the common part
is only 15.4% without the protection of Anonprint (Figure. 9). We
believe such large overlap (over 50%) makes the �ngerprint useless
for tracking. Therefore, we conclude that Anonprint indeed breaks
vendors’ capability of linking screen �ngerprint.

5.4 Fingerprint Veri�cation
The enhancement of anonymity comes with the cost of a decrease
in veri�cation accuracy, causing a legitimate payment request more
likely to be rejected by the provider or an unauthorized payment
request a little more likely to be accepted. To understand such
impacts, we analyzed the veri�cation accuracy when masks are
applied.

Experiment setup. In our experiment, we �rst use the 46 phones
to act as the payers to show their QR codes to our scanner (simu-
lating �ngerprint registration). The registered �ngerprints in this
step are denoted by FRe� . Then, all volunteers present the QR code
with the background obfuscated by a random mask (simulating
the authentication step during the payment). All 46 �ngerprints
collected at this step are denoted by FAuth . Next, each volunteer
loads the QR code with the masks from other volunteers for 4 times,
and we collected all 164 (invalid 20 excluded) such �ngerprints (de-
noted by FImp ). This simulates the scenario when the adversary has
controlled the victim’s phone and acquired all payment secrets to
generate payment screens (correct QR code and correct masks). Af-
ter that, all registered �ngerprints FRe� are used together with the

reconstructed masks to synthesize obfuscated �ngerprints (FS�n ),
which are compared to their corresponding �ngerprints FAuth , in
order to compute the self similarity. The �ngerprints FImp are com-
pared to the corresponding FS�n (from the genuine mask owner
instead of the attacker) to compute the mutual similarity.
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Figure 11: PDFs of similarity in �ngerprint veri�cation.

Experiment result. Figure 11 shows the PDFs for both the self
similarity and the mutual similarity. Ideally, with the original �nger-
prints FRe� in the database and the samemasks shown by the wallet
app, the server could totally remove the e�ects from obfuscation
to achieve the distributions in Figure 9. Actually, the distributions
shown in Figure 11 indeed come close to these in Figure 9, except
the distribution for mutual similarity moving up and left towards
that of the self similarity, which moves down a bit. The problem is
caused by the obfuscation and de-obfuscation processes, steps that
inevitably bring in noise. As a result, the veri�cation on obfuscated
�ngerprints becomes less accurate than that on the unprotected
ones.

Nevertheless, Table 2 shows that a good balance between the FRR
and FAR can still be found. Speci�cally, under di�erent thresholds
as shown in the �rst column of the table, we present both FRR and
FAR. As we can see from the table, even though the FRR and FAR
observed from a single scan can be less ideal (e.g., 8.70% and 4.88% at
the threshold 0.88), with an automated 2-round scan (with the same
mask), AnonPrint can achieve a FRR of 0.76% or a FAR of 1.22%,
which provides the user choices between the convenience (low
FRR) and high protection (low FAR). In practice, a recommendation
could be a su�ciently small FRR and a reasonable FAR to enable
daily operations (mostly by legitimate payers) to go smoothly and
in the meantime raise the bar signi�cantly high for an attack should
it happen. For example, under a threshold of 0.91, a 3-round scan
achieves an FRR of 1.03% and an FAR of 5.39%: that is, a legitimate
user may get falsely rejected (and therefore has to enter a strong
password) once in almost a hundred times, while for the adversary,
even when he manages to steal the victim’s all secrets (except the
screen �ngerprint), he could only succeed once in about 19 times
(assuming that the payment service provider immediately noti�es
the legitimate user each time a transaction fails for a givenmask and
the strong password is not received). Note that such an FRR/FAR
balance is in line with that achieved by biometric-based second
authentication factor. For example, keystroke pressure has an over
14% FRR and FAR [24]. Note that our approach is designed to hide
the authentication secret (the screen �ngerprint) through masking,
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Table 2: FRR/FAR in di�erent threshold and bootstrap
count.

aaaaath
N 1 2 3

0.88 8.7%/4.88% 0.76%/9.52% 0.07%/13.94%
0.89 15.22%/3.66% 2.32%/7.19% 0.35%/10.58%
0.90 19.57%/3.05% 3.83%/6.01% 0.75%/8.87%
0.91 21.74%/1.83% 4.73%/3.63% 1.03%/5.39%
0.94 45.64%/0.61% 20.84%/1.22% 9.51%/1.82%

unlike biometric second factors (facial features, �ngerprints, typing
patterns, etc.), which are often openly disseminated.

5.5 Performance
We further evaluate the performance impacts of our technique,
through measuring the time consumption (averaged from 10 tests)
introduced at di�erent steps, both on the client (the phone) and the
server.

Registration time consumption. A user needs to upload a image
containing his original �ngerprint to the server, when he wants
to add a new device to the service. After having logged in, the
user needs around 30 seconds to launch the application, take a
photo for the new device and upload it to server, which is totally
acceptable and negligible. Also, we believe the registration step
happens rarely, because a user won’t frequently change his devices
used for payment, which is concluded and supported by our survey
showing that people usually stick to one device for more than a
year. Speci�cally, users change their phones with two main reasons:
the phone is outdated; the phone is broken. For the �rst one, the
evolution of hardware has been slowed in recent years, so our
surveyed users, in average, change their phones with this reason
for more than 1.6 years. For the second one, accidents breaking their
phones happen in average every one year, which is not frequent.

Mask generation. Our study shows that mask generation on
Nexus 6 takes 0.05 seconds on average. We compare it to the delay
of QR code displaying using WeChat, a leading wallet app, to under-
stand its impact. Speci�cally, to measure the delay of Wechat, we
run a phone with a 29Hz camera to record the whole QR generation
process in the app, from the moment when the button is clicked
until the code is displayed. The recording shows that the app takes
around 276ms (8/29s) to generate and show the QR code. So, we
conclude that the overhead introduced by AnonPrint (only 50ms)
is small for the o�-line payment.

Fingerprint extraction. After a screen image is taken, the �nger-
print is extracted and sent to the payment service provider through
the POS network. Such an image is of the size of 80-100 KB in
the JPEG format. Our desktop takes 0.64 seconds to extract the
�ngerprint from it.

Fingerprint veri�cation. Our study �nds that this step takes 2.4
seconds on average and the overhead is incurred by the ternary
search for the correct contrast factor k when matching the �nger-
prints. The overhead is noticeable but not signi�cant, given the
fact that just acquisition of QR code from a screen typically takes 1

second, not to mention the further delays in communication and
processing on the payment provider side, in an o�-line payment
transaction. The performance of this search step could be improved
by calculating the left and right forks during the ternary search in
parallel, which could reduce the processing time by half.

6 DISCUSSION
Environment Variance. One limitation of our work is that the
�ngerprint extraction process may be interfered by strong ambient
light. The precision of the �ngerprint extraction scheme might
be impacted under such circumstances. However, the QR code
scanning usually happens in controlled and dim environment (e.g.,
inside a store), to facilitate rapid QR code recognition. Therefore, the
extracted �ngerprint is usually free from glare. To guarantee dim
environment, some scanner manufactures designed their scanners
with lens facing up, as shown in Figure. 12. In this way, when
being scanned, the phone covers the whole scanner and makes the
scanning environment nearly completely dark.

Figure 12: A scanner facing up.

Aging Problem. The �ngerprint of a screen may di�er along time
because of hardware aging, which may fail users’ legal transactions.
This could be solved by updating the �ngerprint periodically. Be-
cause nowadays users frequently make mobile transactions, the
server may notice the shift and update the �ngerprint thereby.
Speci�cally, when the interval between consecutive transactions
is small, the server could update the �ngerprint if the �ngerprint
has a relatively large deviation but the transaction still passes the
authentication.

7 RELATEDWORKS
7.1 Hardware Fingerprint.
Besides screens, a lot of hardware modules on smartphones have
their unique features enabling users tracking.

Radio frequency �ngerprint. Arackaparambil et al. proposed a
technique using the clock skews of the radio frequency modules of
802.11 networks to uniquely identify wireless network devices [7].
PARADIS was proposed to detect the source network interface
card of an 802.11 frame using passive radio-frequency analysis.
The work mainly exploits the imperfection of the transmitter [11].
Again, in 802.11 networks, {Machine, NIC Driver, OS} together are
used to �ngerprint a network device [15]. BesidesWi-Fi network de-
vice �ngerprinting, there is also a generic RF device �ngerprinting
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scheme [27]. However, those methods cannot be directly applied
to track the payer, because the o�-line payment does not require a
Wi-Fi network.

Sensor �ngerprint. Accelerometers that are widely equipped on
smartphones can be used to �ngerprint the phones [16], because of
the manufacture imperfection. Besides, smartphone speakers are
di�erent from one phone to another, which enables applications
running on the phone to measure the characteristics of the sound
played by the phone for �ngerprinting [14]. The process can even
be silent to people around [28]. However those hardware based
�ngerprinting schemes cannot be used to protect the payer from
attackers who controlled the operating system, as those �ngerprints
can be easily measured by the OS and then sent to attackers. With
those �ngerprints, an attacker can manipulate the outputs of the
sensor, making them appear to have a correct feature, as a result,
bypassing the authentication.

7.2 Unconventional Tracking Method.
Besides hardware based tracking methods, there are a lot of uncon-
ventional tracking methods that trace device users silently without
using hardware feature.

Web browser tracking. To track a web browser user, the attacker
can check the availability of a speci�c font set, time zone, screen
resolution etc, without the help of traditional cookie [10]. Besides,
versions and con�gurations that appear in the HTTP request head
can be used to �ngerprint the user [17]. Nikiforakis et al. demon-
strated that how over 800,000 users are �ngerprintable even when
they are using user-agent-spoo�ng extensions [22].

Miscellaneous tracking. Smartphones can be tracked simply
through their personalized device con�gurations [19]. The applica-
tions installed on a phone can also be used to predict the trait of
the phone user [25].

7.3 Biometric 2nd factor authentication.
A lot of biometrics can be used to authenticate users as assistance
to password. Besides regular ones that have been widely deployed,
like face, �ngerprint and iris, there are also some implicit biometric
authentication methods.

Keystroke dynamics. Di�erent people typing even the same pass-
word have di�erent patterns, which also can be used to authenticate
users. Banerjee et al. and Teh et al. surveyed some works related
to keystroke dynamics as authentication and identi�cation [9, 26].
Keystroke dynamics cannot be used the in QR code payment sce-
nario because payers do not need typing. Besides, according to
the survey, the best scheme supporting both text and digits input
(nowadays, most passwords require both types) on the mobile plat-
form still have a 12.8% EER [13], even with a modi�ed device: that is,
an FRR and FAR both reaching 12.8%. On mobile platform, the error
rates are even worse, as they can exceed 13% [12, 20]. This level of
e�ectiveness is well below what we can do even on anonymized
screen �ngerprints.

Gait. Gafurov et al. proposed a framework to use the motion sensor
on wearable devices to do gait authentication and identi�cation[18].
Ngo et al. presented a large database containing 744 subjects, which

enables them to optimize gait authentication algorithms consid-
ering di�erent genders, ages ground conditions etc [21]. The gait
biometrics however can hardly be collected in our scenario because
the QR code payment is o�ine, in which case the service provider
has no access to the inertial sensor output information.

8 CONCLUSION
In this paper, we present a new technique that enhances the security
protection to popular QR-based payment, without undermining the
payer’s privacy. Our technique leverages the features of the payer’s
screen, which is characterized by its unique luminance unevenness
introduced by the imperfect manufacture process, ensuring that
even when the payer’s digital wallet has been fully compromised,
an unauthorized payment still cannot succeed. The screen features,
however, would raise a privacy concern, were it naively deployed
to authenticate the payer, since it could be abused by the vendors to
link one’s di�erent purchases together. To address this concern, we
present AnonPrint that obfuscates the phone screen during each
payment transaction. This new approach defeats the attempt to cor-
relate the payer’s purchase activities and also enables the payment
provider, who can reconstruct the obfuscation mask, to authenticate
the payer. We evaluated its e�cacy through experiments, which all
demonstrate the promise of this new solution.
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