
1

BitMine: An End-to-End Tool
for Detecting Rowhammer Vulnerability

Zhi Zhang, Wei He, Yueqiang Cheng, Wenhao Wang,
Yansong Gao, Minghua Wang, Kang Li, Surya Nepal, Yang Xiang (IEEE Fellow)

Abstract—Rowhammer is a destructive software-induced
DRAM fault, which an attacker can leverage to break system
security. Both individual customers and enterprise users (e.g.,
cloud providers) might refrain from using a computing system
if it is vulnerable to rowhammer vulnerability.

In this paper, we provide the first end-to-end tool, coined Bit-
Mine, that systematically assesses a DRAM chip’s vulnerability
to rowhammer bit flips. BitMine is an extension of DRAMDig. As
DRAM address mappings are proprietary techniques and critical
in inducing rowhammer bit flips, DRAMDig, our prior work,
leverages domain knowledge to efficiently and deterministically
reverse-engineer DRAM address mappings on Intel machines.
By incorporating DRAMDig, BitMine configures three key pa-
rameters, i.e., hammer methods, hammer patterns, data patterns,
on the effectiveness of finding rowhammer bit flips. BitMine by
default implements 13 hammer methods, 4 hammer patterns and
16 data patterns and is extensible to support more. We evaluate
DRAMDig and BitMine against multiple machine models that
combine different DRAM chips and Intel microarchitectures. Our
experiment results show that DRAMDig efficiently uncovers a
deterministic DRAM address mapping for each machine model,
and every implemented parameter in BitMine has its distinct
effectiveness in triggering bit flips for different machine models.

Index Terms—Rowhammer, DRAM Address Mapping, Ham-
mer Method, Hammer Pattern, Data Pattern.

I. INTRODUCTION

DRAM is the main memory unit of modern computing sys-
tems and organized into rows. In 2014, Kim et al. [1] reported
a software-induced DRAM fault, the so-called “rowhammer”,
that is, frequently accessing two DRAM rows (aggressor row)
can cause bit flips in an adjacent row (victim row) even without
accessing the row. The fault was soon after exploited in many
rowhammer attacks (e.g., [2], [3], [4], [5], [6], [7]), posing
a serious security threat to our computing systems. As such,
individual and enterprise users are concerning whether their
systems are susceptible to rowhammer fault.

To address their concerns, understanding how physical
addresses are mapped into DRAM forms the necessary base

Z. Zhang and W. He are joint first authors.
Corresponding author: Y. Gao.
Z. Zhang is with Data61, CSIRO. E-mail: zhi.zhang@data61.csiro.au.
W. He is with SKLOIS, Institute of Information Engineering, CAS and

School of Cyber Security, University of Chinese Academy of Sciences. E-
mail: hewei@iie.ac.cn.

Y. Cheng is with NIO. E-mail: yueqiang.cheng@nio.io.
W. Wang is with Institute of Information Engineering, CAS, China. E-mail:

wangwenhao@iie.ac.cn.
Y. Gao is with School of Computer Science and Engineering, NanJing Uni-

versity of Science and Technology, China. E-mail: yansong.gao@njust.edu.cn.
M. Wang is with Ant Group. E-mail: minghua.wmh@antgroup.com.
K. Li is with Baidu. E-mail: kangli01@baidu.com.
S. Nepal is with Data61, CSIRO. E-mail: surya.nepal@data61.csiro.au.
Y. Xiang is with School of Software and Electrical Engineering, Swinburne

University of Technology, Australia. E-mail: yxiang@swin.edu.au.

[2], [8], [5]. Although a DRAM address mapping is available
in AMD’s architectural manual, it is undocumented by another
major chip company, Intel. As shown in Table I, Seaborn et
al. [2] were the first to uncover a mapping. They first perform
a blind rowhammer test, results of which are used to uncover
DRAM address mapping of a given machine. Although their
methodology is intuitive and simple, the blind test is quite
inefficient (within hours) and needs to be performed again
if the machine setting changes (e.g., its microarchitecture
and/or DRAM chips are replaced). To address the inefficiency
issue, Xiao et al. [5] applied a timing channel [9] to uncover
DRAM address mappings. However, their algorithm only
works for old Intel architectures such as Sandy Bridge. The
root cause behind their limitation is that they manually figure
out bits of a physical address that index DRAM banks (we
have experimented the code they shared and details are in
Section VI-A). DRAMA [8] was the first to present a generic
reverse-engineering algorithm that can be used in any Intel
machines. To decide the bank bits, DRAMA blindly selects
physical addresses, enumerates all possible combinations of
certain part of the physical-address bits and verify each com-
bination based on the aforementioned timing channel. Due to
its blind selection of physical addresses, DRAMA is inefficient
(within hours) and often fails to output a deterministic DRAM
address mapping (we also tested their code1 and details are in
Sections VI-A and VI-B).

Reverse Engineer Generic Efficient Deterministic
Seaborn et al. [2] × × (within hours)

√

Xiao et al. [5] ×
√

(within minutes)
√

DRAMA [8]
√

× (within hours) ×
DRAMDig [10]

√ √
(within minutes)

√

TABLE I: A comparison of algorithms that reverse-engineer
DRAM address mappings. DRAMDig [10] is the first generic
and efficient algorithm to generate deterministic DRAM ad-
dress mappings. All other algorithms cannot achieve these
three properties at the same time.

DRAMDig: In this paper, we revisit the limitations and
advantages of the aforementioned reverse-engineering algo-
rithms and observe that none of them made full use of
domain knowledge. With this key observation, we propose a
generic knowledge-assisted algorithm, DRAMDig [10], that
utilizes domain knowledge (see Section IV-A) to produce
a deterministic DRAM address mapping for an Intel-based
machine. First, DRAMDig detects physical-address bits that
index rows and columns, respectively. Second, DRAMDig

1https://github.com/IAIK/drama



2

resolves the mappings from remaining bits to banks including
channels, DIMMs, and ranks. Third, DRAMDig determines
some bank bits that are also row bits or column bits.

DRAMDig is tested against 9 different machine models,
results of which show that DRAMDig efficiently and de-
terministically uncovers DRAM address mapping on each
model within only 7.8 minutes on average. On the uncovered
mappings, we perform double-sided rowhammer tests on three
different machine settings and all results show that DRAMDig
is much more effective in inducing rowhammer bit flips
than the other generic algorithm, DRAMA [8], justifying the
correctness of DRAMDig.

BitMine: With DRAMDig as the base, BitMine is the first
end-to-end rowhammer tool to evaluate a computing system’s
susceptibility to rowhammer. BitMine incorporates three key
configurable parameters as follows that have observable effects
on finding rowhammer bit flips:

• hammer method. A hammer method enables memory ac-
cesses to a targeted DRAM row. As CPU cores have
multiple levels of caches to reduce memory access latency,
a hammer method must bypass the caches, e.g., clflush
followed by a memory load. By default, BitMine imple-
ments 13 hammer methods. We note that we have identified
5 new hammer methods in this work and the remaining 8
ones are summarized from previous works.

• hammer pattern. A hammer pattern is to apply a hammer
method for hammering one or multiple rows. An effective
hammer pattern results in frequent row activations and
thus bit flips. Double-sided hammer is corroborated by
previous works [11], [1] in inducing the most significant
number of bit flips in DDR3-based systems, which however
cannot induce a single bit flip in recent DDR4-based
systems that support Hardware Target Row Refresh [12],
[13] (HardTRR), an in-DRAM rowhammer mitigation tech-
nique. BitMine leverages TRRespass [14] and presents 4
hammer patterns that can induce bit flips in both DDR3
and DDR4-based systems.

• data pattern. A data pattern is to store specific data values
into aggressor and victim rows, e.g., RowStripe [1] where
rows padded with ‘0’ are interleaved with rows padded with
‘1’. Different data patterns can have different effectiveness
in inducing bit flips (e.g., the difference of bit-flip number
can be in an order of magnitude). Besides, the most
effective data pattern for a given computing system may not
apply to another system. BitMine provides 16 data patterns
across rows’ and columns’ data transformation.

BitMine is evaluated on 6 different machine models. The
experimental results show that the hammer methods, hammer
patterns and data patterns have different effectiveness in in-
ducing rowhammer bit flips. Specifically, different hammer
methods have distinct time costs and a single hammer method
behaves differently in different machines. Besides, double-
sided hammer is much more effective in causing bit flips in
DDR3-based machine models in comparison with one-location
hammer and single-sided hammer. In DDR4-based machine
models, only many sided hammer (i.e., more than 2-sided)
can induce bit flips due to HardTRR’s protection. Particularly,

one-location hammer does not induce a single bit flip in all our
test machines. For data patterns, different machines exhibit a
distinct set of effective data patterns in triggering bit flips.

In summary, we make the following key contributions:
• We present DRAMDig to reverse-engineer DRAM address

mappings for different Intel-based computing systems that
are equipped with either DDR3 or DDR4 chips.

• We extend DRAMDig to BitMine, the first end-to-end
system tool that provides three key user-configurable pa-
rameters in effectively inducing rowhammer bit flips.

• BitMine by default implements 13 hammer methods (5
hammer methods are newly identified), 4 hammer patterns
and 16 data patterns, and can support more from the three
parameters.

• We conduct a comprehensive evaluation of DRAMDig and
BitMine, respectively. The experimental results corrobo-
rate that DRAMDig is efficient in reverse-engineering a
deterministic DRAM address mapping. Besides, each key
parameter has distinct effectiveness in inducing bit flips for
different machine models.
The rest of the paper is structured as follows. In Sec-

tion II, we introduce the DRAM organization and rowhammer
vulnerability. In Section III, we present the overview of
BitMine. Sections IV and V describe DRAMDig and three
key configurable parameters of BitMine. In Sections VI and
VII, we present a comprehensive evaluation of DRAMDig and
BitMine on different CPU microarchitectures with different
DRAM types including both DDR3 and DDR4. We discuss
the related works and conclude this paper in Sections VIII
and IX, respectively.

II. BACKGROUND

In this section, we describe modern DRAM and rowhammer.

A. Dynamic Random-Access Memory

Dynamic Random-Access Memory (DRAM) modules are
produced in the form of Dual Inline Memory Module (DIMM).
A DIMM is directly connected to the CPU’s memory con-
troller through one of two channels. A DIMM consists of one
or two ranks, corresponding to its one or two sides. Each rank
is further decomposed of multiple banks. A bank is structured
as arrays of cells with rows and columns. For example, we
have two 4 GiB DDR3 Samsung modules. Each module has
two ranks (2 GiB each), and each rank is vertically partitioned
into 8 banks, which in turn consists of 32 K rows of memory
(8 KiB each). The DIMM information can be queried using the
decode-dimms tool on Linux [15]. A cell has two types [16].
One is true cell where a charged state represents a bit of “1".
The other is anti cell where a charged state is “0". When
a memory access to a desired bank occurs, this “opens” a
specified row by transferring all data in the row to the bank’s
row buffer and a specified column from the row buffer will
be accessed. Any subsequent access to the same row will be
served by the row buffer, while opening another row will flush
the row buffer.
DRAM Refresh: The charge in the DRAM cell is not
persistent and will drain over time due to charge leakage [1].



3

Target Objects Privilege Boundary Attacks

Last-Level PTEs User-Kernel [2], [3], [4], [6], [18]
VM-Hypervisor [5]

Setuid Opcodes Inter-Process [11]
JavaScript Objects Intra-Process [19], [20]

DNN Model Weights Inter-Process [21], [22]
Memcached Objects Intra-Process [23]

RSA Keys Inter-Process [24], [25]
Inter-VM [26]

TABLE II: Target objects of existing rowhammer attacks.

To prevent data loss, a periodic re-charge or refresh is required
for all cells. DRAM specification dictates that the DRAM
refresh interval is either 32 or 64 ms, during which all cells
within a rank will be refreshed. A higher interval indicates
better performance and thus 64 ms is the default one for DDR3
and DDR4.
DRAM Address Mapping: A CPU’s memory controller
decides how physical-address bits are mapped to a DRAM
address. A DRAM address refers to a 3-tuple of bank, row,
column (DIMM, channel, and rank are included into the bank
tuple). As this mapping is not publicly documented on a major
processor platform, i.e., Intel, Seaborn et al. [15] observed
that only different rows within the same bank can induce
rowhammer bit flips. Based on this observation, they made
an educated guess on the DRAM address mapping of an Intel
Sandy-Bridge CPU. Both DRAMA [8] and Xiao et al. [5]
relied on a timing channel [9] to uncover the mapping.

B. Rowhammer

DRAM rows are vulnerable to persistent charge leakage in-
duced by adjacent rows [1]. Specifically, frequently activating
one row before the DRAM refresh comes can cause bit flips to
its neighboring rows. The activated rows are called aggressor
rows while the bit-flipped rows are called victim rows. Mutlu
et al. [17] provides a detailed survey of the rowhammer.

If sensitive data (e.g., page tables) exist in some victim
rows, the data can be corrupted by rowhammer and thus the
whole system security can be compromised (e.g., privilege
escalation). Since 2014, various rowhammer attacks have been
proposed, which are listed Table II based on an attack target.
Control Last-Level PTEs: All rowhammer attacks that
target kernel or hypervisor focus on manipulating last-level
page-table-entries (PTEs), which can be massively created by
attackers. Seaborn et al. [2] presented the first rowhammer ex-
ploit to compromise last-level PTEs and gain kernel privilege
in bare-metal systems. Xiao et al. [5] demonstrated the first
attack against host PTEs in paravirtualized Xen hypervisor and
gain the hypervisor privilege.
Flip Opcodes in Setuid Binaries: Gruss et al. [11] were
the first to show that gaining root privilege by compromising
real-world Setuid processes (e.g., sudo) is possible.
Corrupt JavaScript Objects: Bosman et al. [19] leveraged
memory deduplication to craft counterfeit JavaScript objects
and corrupted these objects by the rowhammer, escaping the
sandbox environment and gaining the browser privilege.
Flip DNN Model Weights: In 2019, Hong et al. [22]
showed that single-bit corruptions in DNN model weights

could greatly downgrade the inference accuracy of popular
DNN models, opening up a new attack vector for exploitation
as the machine learning models have been widely deployed in
many sensitive scenarios.
Corrupt Memcached Objects: While all above attacks
require unprivileged code execution in the target system,
Andrei et al. [23] showed how to trigger and exploit bit flips
in memcached objects by only sending network packets.
Leak RSA Keys: Andrew et al. [25] were the first to exploit
rowhammer as a read side channel. In contrast to all other
rowhammer attacks that break integrity of target data, they
showed that rowhammer-induced data confidentiality is also a
realistic threat, as they observed that data dependence between
rowhammer-induced bit flips in one row and the bits of its
adjacent rows could be used to deduce these bits.

III. BITMINE

In this section, we discuss threat model and assumptions as
well as the overview of BitMine.

A. Threat Model and Assumptions

The primary goal of BitMine is to help a user detect
the rowhammer vulnerability from his DRAM-based system.
In other words, the user leverages the tool to effectively
trigger rowhammer bit flips. To run BitMine properly, the
user is assumed to be a system administrator and own the
root privilege. Without the privilege, DRAMDig will fail in
reverse-engineering DRAM address mapping, which is critical
for BitMine to perform effective rowhammer detection. We
explain more in the following section.

B. Overview

To effectively trigger rowhammer bit flips in vulnerable
rows, from a modern CPU, BitMine has four main components
that have been marked in Figure 1. As shown in the figure,
there are two phases that map a virtual address to a DRAM
address in mainstream operating systems. In the first phase, a
memory access will trigger an address translation. In response,
Memory Management Unit (MMU) translates a virtual address
to a physical address. For BitMine users, the virtual to physical
mapping can be addressed by accessing pagemap, which
allows a user-space process to find out the physical page a
virtual page is mapped to. To mitigate rowhammer, the Linux
kernel only allows root users to access pagemap interface
since kernel version 4.0 [27]. As such, BitMine, DRAMDig
in particular, requires the root privilege for acquiring the first-
phase mapping.
Hammer Method: If the physical address is for a read
access, a CPU core will first try to find target data/instruc-
tion by searching CPU caches. If it is for a write access,
the core will search either caches or write-combining (WC)
buffers (e.g., non-temporal stores [28]). A hammer method
ensures that a memory access goes directly into the DRAM
for hammer. As such, relevant CPU cache lines or WC
buffers must be flushed. Specifically, flushing all-level CPU



4

data pattern
cache

write-combining 
buffers

memory 
controller

DRAM
 address mapping

DRAM bank

hammer method

address translation

virt addr

phys addr

1 1

1 1

1

1

row buffercore

hammer pattern

Fig. 1: BitMine has four primary components in effectively triggering rowhammer bit flips, i.e., hammer method, DRAM address
mapping, hammer pattern, data pattern. We note that the DRAM address mappings are undocumented in Intel architectures
and have been reverse-engineered by DRAMDig [10]. (In the DRAM bank, green ovals are in an aggressor row while orange
ovals are in a victim row.)

cache lines can be achieved by either unprivileged instruc-
tions or eviction sets of physical memory lines. As eviction
set-based methods are much less efficient than instruction-
based methods [18], BitMine only considers available Intel
instructions, i.e., clflush and clflushopt, already used
in prior works [2], [3]. Regarding flushing the WC buffers,
prior work [28] only reported two such Intel instructions,
i.e., movnti and movntdq, which write non-temporal data
directly into memory. Besides them, we have found that Intel
has a string of such instructions, i.e., movntpd, movntps,
movntq, maskmovq and maskmovdqu. Based on them,
BitMine by default provides 13 efficient hammer methods,
among which, 5 are newly identified in this work and 8 are
summarized from previous works (see details in Section V-A).

DRAMDig: In the second phase, a physical address will be
mapped by the memory controller to a DRAM address, the
so-called DRAM address mapping. DRAMDig makes use of
domain knowledge to produce a deterministic DRAM address
mapping on a machine. In the next section, we talk about
how DRAMDig reverse-engineers DRAM address mappings
in detail.

Hammer Pattern: We note that Section II-A states that
the row buffer serves frequent memory accesses, which will
prevent hammering aggressor rows. On top of that, hardware-
based Target Row Refresh (HardTRR) [13], [12] is designed
to prevent rowhammer bit flips in present LpDDR4 and DDR4
chips. HardTRR identifies possible victim rows by counting
rows activations and refreshes rows to suppress bit flips when
the counter reaches a predefined threshold. A hammer pattern
will clear the row buffer and use a selected hammer method for
each aggressor row. In our implementation, BitMine provides
four hammer patterns that all bypass row buffer and ham-
mer one or multiple aggressor rows. One of them bypasses
HardTRR and thus works in DDR4 chips (see details in
Section V-B).

Data Pattern: Kim et al. [1] observe that whether a cell
in a victim row flips has a dependency on data values stored
in victim rows and their adjacent aggressor rows (i.e., data
pattern), indicating that an individual victim row might not be

bit-flipped due to an ineffective data pattern. As such, BitMine
provides 16 data patterns where data are organized in terms of
rows or columns in order to find as many bit flips as possible
(see details in Section V-C).

IV. DRAMDIG

As shown in Figure 2, DRAMDig consists of three main
steps. In step 1, we perform row and column bits detection
and produce a coarse-grained results; that is, most row and
column bits are uncovered while bits in green boxes are still
covered. In step 2, we carefully select physical addresses that
only differ in bits shown in green boxes, then partition those
addresses into different piles (addresses in each pile share the
same bank), and identify bank address functions that can work
for all piles. In step 3, we perform a fine-grained analysis on
the resolved bank address functions to detect row or column
bits that also play a role in the bank address functions as shared
bits (see lined boxes in Figure 2). Note that in each step we
need domain knowledge.

In the following paragraphs, we first introduce domain
knowledge and a timing primitive, and then talk about the
three steps, respectively.

A. Domain Knowledge

We obtain the domain knowledge from the following three
sources.
• Specifications. From the specifications of DDR3, DDR4 and

LPDDR4 [29], [12], [13], we can collect physical-address
bits that index banks, rows and columns for a given DRAM
chip.

• System Information. The Linux system information includes
the total number of banks, the size of physical memory,
and whether DRAM chips support Error Code Correction
(ECC) [30]. We get this information from the output of two
Linux bash commands, i.e., decode-dimms and dmidecode.

• Empirical observations. We summarize two key empirical
observations from previous works [2], [5], [8]. First, a bank
address function on Intel microarchitecture is a tuple of
multiple physical address bits, which are XORed to output



5

 row & column bit detection
(coarse-grained)

physical address bit index

domain 
knowledge

 bank address function resolving

 row & column bit detection
(fine-grained)

row bits bank bits column bits

step 1

step 2

step 3

row bits bank bits column bits

row bits bank bits column bits

row bits bank bits column nits

shared bits between banks and rows or columns

covered bits uncovered bits

Fig. 2: DRAMDig Workflow.

a single bit. Second, since Ivy Bridge, the lowest bit of a
bank address function that owns the most number of bits is
not the column bit. For example, there are five bank address
functions for M6 shown in Table III of the paper. One of
them has the most number of physical-address bits, that
is, (8, 9, 12, 13, 18, 19). Based on this observation, this
function’s first bit (i.e., 8) is not a column bit.

B. A Timing Primitive

We resort to a timing channel [9] to reverse-engineer the
DRAM mappings. Specifically, this timing channel is caused
by the row-buffer conflicts within the same DRAM bank.
As mentioned in Section II, each bank has a row buffer
that caches the last accessed row. If a pair of addresses
reside in two different rows of the same bank and they are
accessed alternately, the row buffer will be repeatedly cleared
and reloaded. This causes the so-called row-buffer conflicts.
Clearly, row buffer conflicts can lead to higher latency in
accessing the two addresses than the case where they are either
within the same row or in different banks. As such, we can
distinguish whether two addresses are in different rows within
the same bank.

C. Row & Column Bit Detection (Coarse-Grained)

We first partition the physical address bits into row, column
and bank bits at a coarse-grained level. We use the same
approach as the work [5]. Specifically, for row bits, we
measure access latency for two physical addresses that have

only one bit different. If the latency is high, that means those
addresses reside within the same bank but different rows
(SBDR), and that bit is the only different bit for the two
addresses. Thus, this bit is a row bit.

For column bits, we select two physical addresses with only
two different bits. One bit is a detected row bit and the other is
a non-row bit. If we get high latency for those two addresses,
the non-row bit is a column bit. Given that the two addresses
are in the same bank and neither of the two bits is a bank bit,
the non-row bit is thus a column bit that determines which
column a physical address is mapped to. After finding out
row and column bits using the above approaches, we consider
remaining bits as bank bits.

Note that the bits detection results in this step are coarse-
grained. The row and column bits that have been detected are
to index rows and columns. There can be other row bits or
column bits that also index banks, and they are not detected in
this step. We will discuss how to identify them in section IV-E.

D. Bank Address Function Resolving

We uncover bank address functions based on the above
coarse-grained detection results. We have three steps. First,
we enumerate a number of possible address ranges based on
the bank bits, and select physical addresses within those ranges
by allocating a large memory region. Second, we partition the
selected addresses into #bank number of piles (#bank can be
known from the System Information in Section IV-A). Last,
we detect the bank address functions by analyzing the address
piles. We discuss the three phases in detail as follows.
Physical Address Selection: The main idea is to only
select the physical addresses within specified ranges. The
ranges reflect all possible values of all bank bits, and thus
the selected addresses contain all the bank address functions.
As the number of bank bits is determined through coarse-
grained detection, the number of selected addresses can be
determined. Algorithm 1 presents how we perform physical
address selection.

The algorithm first calculates a range_mask, which indi-
cates bank bits positions, and selects the physical pages that
cover that range (line 7-15). In order not to miss any bank bits,
we require that the selected physical pages are consecutive,
and if there are some pages missed in phys_pages, we try
again. The last found physical page range is presented by
[P_start, P_end].

Note that we use b_min and b_max to calculate range
mask, but not all the bits in [b_min, b_max] will be used in
the bank address functions. We use “miss_mask" to represent
those bits that have nothing to do with the address functions
such that we set the bits to 1. Next, for every investigated
address p with [P_start, P_end], we make it first mask
against miss_mask and then check whether the new address
p′ is within phys_pages. If so, we add it to phys_pool, which
holds final selected addresses. With “miss_mask", it enables
us to only focus on the reasonable number of addresses that
does matter in determining the address functions.
Physical Address Partition: We apply Algorithm 2 to
partition the selected addresses into #bank numbers of piles.



6

Algorithm 1 Physical Address Selection
Input: phys_pages: allocated memory pages; B: possible bank bits;
Output: phys_pool

1: b_min, b_max = find_min_max(B)
2: range_mask = (1 << (b_max+ 1))− (1<<b_min)
3: miss_mask = 0
4: for b ∈ [b_min, b_max] && b /∈ B do
5: miss_mask+=(1 << b)
6: end for
7: for p ∈ phys_pages do
8: if (p&range_mask) == range_mask then
9: P_start = p− range_mask

10: P_end = p+ PAGE_SIZE
11: if !page_miss(phys_pages, P_start, P_end) then
12: break
13: end if
14: end if
15: end for
16: phys_pool = {}
17: for p = P_start; p < P_end; p+ = (1 << b_min) do
18: p′ = p | miss_mask
19: if page(p′) ∈ phys_pages then
20: phys_pool.add(p′)
21: end if
22: end for
23: return phys_pool

First, we randomly select one address p from phys_pool and
measure the latency with every other address. If the latency
is high, it means we have one address that is SBDR with p.
We put it into piles[p] which stores addresses from phys_pool
that are SBDR with p (line 4-9). By doing so, we can collect
all addresses from phys_pool that are SBDR with p and
record them in piles[p]. Next we verify whether the number
of addresses in piles[p] is within a valid range. If so, we
consider this round of partition is successful, and then remove
all the addresses in piles[p] from phys_pool and conduct next
round of partition (line 10-12). Finally, it stops when enough
addresses have been partitioned (line 13-15).

Algorithm 2 Physical Address Partition
Input: phys_pool: selected physical addresses
Output: piles: a map < k, v >, of which k is an address and v is

the addresses that are SBDR with k.
1: pool_sz = phys_pool.size()
2: pile_sz = pool_sz/#bank
3: while True do
4: randomly select p from phys_pool
5: for p′ ∈ phys_pool − {p} do
6: if latency(p, p′) == high then
7: piles[p].add(p′)
8: end if
9: end for

10: if 1− δ ≤ piles[p].size()/pile_sz ≤ 1 + δ then
11: phys_pool = phys_pool − {piles[p]} − {p}
12: end if
13: if phys_pool.size() > per_threshold ∗ pool_sz then
14: break
15: end if
16: end while
17: return piles

Ideally, all the addresses in phys_pool will be partitioned
into #bank number of piles with each pile having the same
number of addresses. However, in practice the partition may

be influenced by noises introduced by incorrect results of
latency measurement, so it is possible that not all of piles have
the same number of addresses, and also there may be some
addresses that are not partitioned into any pile. That’s why
we introduce δ and per_threshold and they can be adjusted
in practice. Empirically, we set δ to 0.2 and per_threshold
to 85% and then the addresses can be successfully partitioned
into #bank number of piles.

Bank Address Function Detection: We utilize Algorithm 3
to present how to detect bank address functions based on the
address piles obtained.

Algorithm 3 Bank Address Function Detection.
Input: piles: a map < k, v >, of which k is an address and v is

the addresses that have SBDR with k; B: bank bits
Output: bank_funcs: the set that stores bank address functions

1: xor_masks = gen_xor_masks(B)
2: bank_funcs = {}
3: for pile ∈ piles do
4: func_set = {}
5: for mask ∈ xor_masks do
6: if apply_xor_mask_to_pile(mask, pile) then
7: func_set.insert(mask)
8: end if
9: end for

10: bank_funcs = bank_funcs ∩ func_set
11: end for
12: prioritize(bank_funcs)
13: remove_redundant(bank_funcs)
14: check_numbering(bank_funcs, piles)
15: return bank_funcs

According to Empirical Observation in Section IV-A, bank
address functions take some bank bits as input and output
XORed values from those bank bits. Since we have grouped
#bank number of piles and the addresses in each pile map to
the same bank, we look into each pile and try all combinations
of bank bits and apply each of them to the addresses in the
pile. We look into the combination starting from one bit to
the number of bank bits (line 1). If a combination of bank
bits has the same XORed result for all the addresses in the
pile, we consider it as a possible bank address function. After
investigating all the piles, we can have all possible bank
address functions (line 3-11).

However, some address functions are just linear combina-
tions of the others so they are not the actual address functions
and need to be removed. We consider the functions that have
fewer bits have higher priority and remove the lower one
if it is the linear combinations of higher priority functions.
For instance, if (14, 18), (15, 19) and (14, 15, 18, 19)
are 3 bank address functions. We consider the previous two
have higher priority than the third, because the third is the
linear combination of the previous two and we consider it as
redundant (line 12-13).

Apart from that, the number of bank address functions
should be log2(#bank). There may be more than that number
of functions after removing the redundant, and they are not
actual address functions. So we test every combination of
log2(#bank) number of functions by considering them as
bank address functions and using them to number the address



7

piles. The actual bank address functions can count those piles
from 0 to #bank − 1 (line 14).

E. Row & Column Bit Detection (Fine-Grained)

As discussed in section IV-C, we need to determine the
row bits and column bits that are also bank bits. From the
Specifications in Section IV-A, we know the exact number of
row and column bits for a specific DRAM chip. As we have
detected some row bits and column bits, we can determine how
many row bits and column bits that are left to be uncovered.

For the remaining covered row bits, we start to investigate
the bank address functions that consist of two bits. We select
two physical address with only those two bits different and
measure their latency. The two addresses actually map to the
same bank. If the latency is actually high, it means either one
bit is a row bit. We consider the higher one as the row bits as
discussed in [15], [5]. If there are also row bits still covered
after investigating two-bit address functions, we proceed to
investigate address the bank functions that have more bits. In
practice, we have not seen any case that needs to investigate
the address functions that have three or more bits.

For the remaining covered column bits, we first check the
number of remaining column bits that need uncovered, and
then identify those bits that have not been identified as column
bits in coarse-grained detection, denoted as C. Next, according
to the Empirical Observation in Section IV-A, we know the
lowest bit (denoted as l) of the function occupying the most
number of bits is not a column bit. So we investigate the bits
{C − l}, by the order from low to high, and consider the first
requested number of bits as column bits.

V. KEY CONFIGURABLE PARAMETERS

In this section, we describe 13 hammer methods, 4 hammer
patterns, and 16 data patterns in detail.

A. Hammer Methods

Based on the Intel manual [31], clflush is applicable in
all our test microarchitectures ranging from Intel Sandy Bridge
to Coffee Lake shown in Table III. clflushopt only works
since Skylake but costs less CPU cycles than clflush. As
shown in Listings 1 and 2, X and Y represent two distinct
virtual addresses. The first two instructions are for flushing
relevant cache lines and thus the two mov instructions enable
two DRAM read or write accesses to X and Y, respectively.

Unlike the cache-flush instructions above, non-temporal
store instructions must be combined with either cached read
or write memory accesses to flush the WC buffers [28]. For
example, Listings 3 and 4 show the movnti and movntdq-
based hammer methods, respectively.

1 mov (X), %eax | mov %eax, (X)
2 clflush (X) | clflush (X)
3 mov (Y), %eax | mov %eax, (Y)
4 clflush (Y) | clflush (Y)
5 mfence | mfence

Listing 1: clflush + read / write

1 mov (X), %eax | mov %eax, (X)
2 clflushopt (X) | clflushopt (X)
3 mov (Y), %eax | mov %eax, (Y)
4 clflushopt (Y) | clflushopt (Y)
5 mfence | mfence

Listing 2: clflushopt + read / write

1 movnti %eax, (X) | movnti %eax, (X)
2 mov (X), %eax | mov %eax, (X)
3 movnti %eax, (Y) | movnti %eax, (Y)
4 mov (Y), %eax | mov %eax, (Y)
5 mfence | mfence

Listing 3: movnti + read / write

1 movntdq %xmm0, (X) | movntdq %xmm0, (X)
2 mov (X), %eax | mov %eax, (X)
3 movntdq %xmm0, (Y) | movntdq %xmm0, (Y)
4 mov (Y), %eax | mov %eax, (Y)
5 mfence | mfence

Listing 4: movntdq + read / write

B. Hammer Pattern

(a) one-location hammer

row buffer row buffer row bufferrow buffer

(b) single-sided hammer (c) double-sided hammer (d) many-sided hammer

row n-2

row n-1

row n

row n+1

row n+2

Fig. 3: Four efficient hammer patterns that bypass row buffer
and hammer one or multiple rows in the same DRAM bank.
(A row of green ovals is the aggressor row and a row of orange
ovals is the victim row.)

Based on previous works [32], [14], BitMine has four
hammer patterns shown in Figure 3, which are summarized
as follows.
One-location Hammer: This pattern [11] randomly selects
one single row for hammer without knowledge about virtual-
to-DRAM mappings, as illustrated in Figure 3(a). It only
applies to certain computing systems where advanced memory
controllers employ a more sophisticated policy (e.g., closed
row or adaptive page) to optimize performance, that is, pre-
emptively closing accessed rows earlier than necessary and
thus flushing the row buffer.
Single-sided Hammer: Intuitively, performing access to no
less than two DRAM rows within the same bank causes row-
buffer conflicts and thus clears the row buffer. As such, single-
sided hammer randomly picks two aggressor rows for hammer,
with the hope that one aggressor row is adjacent to a targeted
victim row, as illustrated in Figure 3(b). The probability of
the hope is decided by the total number of rows and it can
be significantly improved if many rows are hammered at the
same time.



8

0 0row n-1

row n

row n+1

col 
0

col 
1

col 
2

col 
3

col 
4

col 
5

col 
6

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1 1 1 1 1

0

0

0

0

0

1

col 
7

0 0 0 0 0 0 0

1 1 1 1 1 1 1

0 0 0 0 0 0 0

0

1

0

0 0 0 0 0 0 0

1 1 1 1 1 1 1

1 1 1 1 1 1 1

0

1

1

1 1 1 1 1 1 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1 1 1 1 1

0 0 0 0 0 0 0

1 1 1 1 1 1 1

1

0

0

1

0

1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

0 0 0 0 0 0 0

1

1

0

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1

1

1

(a) n-1/n/n+1: 0x00/0x00/0x00 (b) 0x00/0x00/0xff (c) 0x00/0xff/0x00 (d) 0x00/0xff/0xff

(e) 0xff/0x00/0x00 (f) 0xff/0x00/0xff (g) 0xff/0xff/0x00 (h) 0xff/0xff/0xff

Fig. 4: 8 data patterns in row transformation for double-sided hammer. Every single bit in each row is the same and the value
of each row is represented in hexadecimal.

0 1 0 1 0 1 0

0 1 0 1 0 1 0

0 1 0 1 0 1 0

1 0 1 0 1 0 1

1 0 1 0 1 0 1

1 0 1 0 1 0 1

1

1

1

0

0

0

1 1 0 0 1 1 0

1 1 0 0 1 1 0

1 1 0 0 1 1 0

0

0

0

1 0 1 0 1 0 1

0 1 0 1 0 1 0

1 0 1 0 1 0 1

0 1 0 1 0 1 0

1 0 1 0 1 0 1

0 1 0 1 0 1 0

0

1

0

1

0

1

0 1 1 0 1 1 0

1 0 1 1 0 1 1

1 1 0 1 1 0 1

1

0

1

1 0 0 1 0 0 1

0 1 0 0 1 0 0

0 0 1 0 0 1 0

0

1

0

0 0 1 1 0 0 1

0 0 1 1 0 0 1

0 0 1 1 0 0 1

1

1

1

row n-1

row n

row n+1

col 
0

col 
1

col 
2

col 
3

col 
4

col 
5

col 
6

col 
7

(a) n-1/n/n+1: 0x55/0x55/0x55 (b) 0xaa/0xaa/0xaa (c) 0x33/0x33/0x33 (d) 0xcc/0xcc/0xcc

(e) 0xaa/0x55/0xaa (f) 0x55/0xaa/0x55 (g) 0333/0555/0666 (h) 0444/0222/0111

1

1

0

0

0

1

Fig. 5: 8 data patterns in column transformation for double-sided hammer. For (a)-(c), every single bit in each column for the
three rows is the same. For (e)-(f), bit values in the aggressor rows are the same while the victim row holds the opposite bit
values. For (g)-(h), their pattern in each row changes for each 3 consecutive bits and thus they are denoted using octal.

Double-sided Hammer: If two adjacent rows of a victim
row are hammered alternately, as illustrated in Figure 3(c),
the victim row is mostly likely to be bit-flipped compared to
the above two hammer patterns. This hammer pattern needs a
complete mapping from virtual addresses to DRAM addresses
to position aggressor rows.
Many-sided Hammer: In this pattern, more than two aggres-
sor rows within the same bank are hammered one after another,
as illustrated in Figure 3(d). In present LpDDR4 and DDR4
chips, HardTRR was believed to eliminate the rowhammer
vulnerability and none of the above hammer patterns can
counteract it. TRRespass [14] proposed this new hammer
pattern to defeat HardTRR and trigger bit flips again even
in recent DRAM chips.

C. Data Pattern
For each hammer pattern, we have 16 data patterns to

store corresponding data values in the aggressor and victim
rows. For instance, Figures 4 and 5 show the data patterns
for double-sided hammer. For data that transform in rows,
we have 8 patterns as shown in Figure 4 based on previous
works [1], [33]. For data that transform in columns, we also
have 8 patterns as shown in Figure 5, inspired by [1], [34].

The reasons why we need both data transformation in rows
and columns are two-fold. First, DRAM cells have an intrinsic
property. If a cell uses a charged state to represent a value of
“1", it is called true-cell. For a cell that represent a value of
“1” with a discharged state, we call it anti-cell. As every cell
in a victim row might lose charge due to rowhammer effect,
we are not sure whether the cell is true-cell or anti-cell. To
uncover bit flips of both true-cell and anti-cell, we store bit
“1" or “0" in the cell in different data patterns. Second, we
would like to figure out whether a bit flip of a victim cell is
correlated with data stored in some other cells. These cells
can reside in the neighboring rows of the victim row or other
columns of the victim row.

VI. DRAMDIG EVALUATION

In this section, we use DRAMDig to uncover DRAM
address mappings in 9 different machines, and compare
DRAMDig against the other generic reverse-engineering algo-
rithm (i.e., DRAMA [8]) in terms of performance and induced
bit-flip number.



9

Machine Microarch. DRAM Bank Address Functions Row Bits Column BitsNo. Type, Size Config.

M1 Sandy Bridge DDR3, 8GiB 2, 1, 1, 8 (6), (14, 17), (15, 18), (16, 19) 17∼32 0∼5, 7∼13i5-2400

M2 Ivy Bridge DDR3, 8GiB 2, 1, 2, 8 (14, 18), (15, 19), (16, 20), (17, 21), (7, 8, 9, 12, 13, 18, 19 ) 18∼32 0∼6, 8∼13i5-3230M

M3 Ivy Bridge DDR3, 4GiB 1, 1, 2, 8 (13, 17), (14, 18), (15, 19), (16, 20) 17∼31 0∼12i5-3230M

M4 Haswell DDR3, 4GiB 1, 1, 1, 8 (13, 16), (14, 17), (15, 18) 16∼31 0∼12i5-4210U

M5 Haswell DDR3, 16GiB 2, 1, 2, 8 (14, 18), (15, 19), (16, 20), (17, 21), (7, 8, 9, 12, 13, 18, 19 ) 18∼32 0∼6, 8∼13i7-4790

M6 Skylake DDR4, 16GiB 2, 1, 2, 16 (7, 14), (15, 19), (16, 20), (17, 21), (18, 22), (8, 9, 12, 13, 18, 19) 19∼33 0∼7, 9∼13i5-6600

M7 Skylake DDR4, 4GiB 1, 1, 1, 8 (6, 13), (14, 16), (15, 17) 16∼31 0∼12i5-6200U

M8 Coffee Lake DDR4, 8GiB 1, 1, 1, 16 (6 13), (14 17), (15 18), (16, 19) 17∼32 0∼12i5-9400

M9 Coffe Lake DDR4, 16GiB 2, 1, 2, 16 (7, 14), (15, 19), (16, 20), (17, 21), (18, 22), (8, 9, 12, 13, 18, 19) 19∼33 0∼7, 9∼13i5-9400

TABLE III: Uncovered DRAM Mappings on 9 different machine settings. (The Config. column presents a specific DRAM
configuration in a quadruple: channel (#), DIMMs (#) per channel, ranks (#) per DIMM, banks (#) per rank.)

A. Uncovered DRAM Address Mappings

DRAMDig has successfully uncovered the DRAM map-
pings including row and column bits and bank address func-
tions for all 9 different machine settings as shown in Table III.
Machines in the table are all running Linux systems with
different combinations of Intel microarchitectures and DRAM
chips including DDR3 and DDR4. From the table, we see that
DRAMDig uncovers bank address functions not only for com-
mon CPU microarchitectures such as Haswell, Sandy and Ivy
Bridge, but also a much newer CPU architecture, i.e., Coffee
Lake, which has never been discussed in previous works [5],
[8]. Besides the bank address functions, row and column bits
are also uncovered, including the shared bits between banks
and rows or columns, which indicates that DRAMDig can
uncover interleaved-mode DRAM address mappings. On top
of that, we note that the column bits are not consecutive in
some machine settings and they are uncovered based on our
Empirical Observation in Section IV-A. Take the M2 as an
example, there are five uncovered bank address functions while
one that has the most number of physical-address bits is (7,
8, 9, 12, 13, 18, 19). As such, this function’s first bit (i.e., 7)
is not a column bit.

Distinguishing DRAMDig: When executing the code that
Xiao el al. [5] shared with us, we found that it could not
work on more than half of the microarchitectures shown
in Table III, which makes itself only applicable to limited
microarchitectures. Take M6 machine setting as an instance,
DRAMDig uncovered 6 bank address functions. However, the
code from Xiao el al. was stuck after (16, 20), (17, 21), (18,
22) had been uncovered.

For DRAMA [8], we ran their code for multiple times and
found that it generated different DRAM mappings most of
the time. As DRAMA is the first generic reverse-engineering
algorithm while both Seaborn’s [2] and Xiao’s [5] algorithms
are not generic and limited to one or multiple machine settings,
we further compare our work against DRAMA in terms of
performance overhead and induced bit-flip number in the
following sections.

B. A comparison of DRAMDig and DRAMA

Performance Overhead: We present the respective perfor-
mance costs of DRAMDig and DRAMA [8] shown in Fig. 6.
DRAMDig can be completed from 69 seconds to 17 minutes
in all machines settings (only 7.8 minutes on average). In
comparison, DRAMA spent from almost 500 seconds to 2
hours, indicating a much higher time cost than DRAMDig.
Particularly in M3 and M7 settings, it cost roughly two hours
without producing any results before we killed it.

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9
Machine Settings

0

1000

2000

3000

4000

5000

6000

7000

Ti
m

e 
Co

st
s (

Se
co

nd
s)

DRAMDig DRAMA

Fig. 6: Time costs for DRAMDig and DRAMA to uncover
DRAM mappings on all machine settings in Table III. Overall,
DRAMDig requires much less time than DRAMA.

For DRAMDig, most of its time cost comes from the phys-
ical address partition, which is heavily affected by the number
of selected physical addresses. A higher number of selected
addresses requires more measurements for access latency, thus
making the partition procedure cost more time. Specifically,
DRAMDig in M6 and M9 settings selected the highest number
of physical addresses (almost 16,000), making itself timing-
consuming. In contrast, it selected the least number (about
4000) in M8 setting, thus making itself time-saving.



10

Test Machines Model Microarch. DRAM
Type Manufacturer Size # Banks Part Number

T1 Lenovo ThinkPad X230 i5-3230M DDR3 Samsung 8GB 32 M471B5273DH0-CH9Ivy Bridge

T2 HP EliteBook 820 i5-4200U DDR3 Samsung 4GB 16 M471B5273DH0-CK0Haswell

T3 Lenovo ThinkStation P300 i3-4130 DDR3 Hynix 4GB 16 HMT351U6CFR8C-H9Haswell

T4 Lenovo ThinkStation P300 i3-4130 DDR3 G.Skill 4GB 8 F3-14900CL9-4GBSRHaswell

T5 Gigabyte Z170G Baseboard i7-6700K DDR4 Kingston 8GiB 32 99P5701-005.A00GSkylake

T6 Asus B250M-K Baseboard i7-7700K DDR4 Kingston 8GiB 32 99P5701-005.A00GKaby Lake

TABLE IV: Machine configurations for BitMine evaluation.

Induced Bit-flip Number: We select three machine settings
from Table III, i.e., M1, M2 and M5 and use the DRAM
address mappings uncovered by DRAMDig and DRAMA
respectively to induce rowhammer bit flips. In this experi-
ment, BitMine is configured to specify a hammer method of
clflush+read, a hammer pattern of double-sided hammer
and a data pattern of 0xff/0x00/0xff in Figure 4. For each
machine setting, we run BitMine for 5 times and each run lasts
5 minutes. The results are shown in Table V. R1-R5 represent
5 runs and the bit-flip numbers of each run are displayed as
DRAMDig/DRAMA. In particular, we can see from the row
of Total that DRAMDig has induced significantly more bit
flips than DRAMA while DRAMA even failed to induce any
bit flips during some runs in M2 and M5 settings. As a result,
the experiment results justify the correctness of the DRAM
address mappings uncovered by DRAMDig.

Run No.
Machine No.

M1 M2 M5
#DRAMDig/#DRAMA

R1 296/197 959/240 12/7
R2 418/179 934/0 12/0
R3 226/177 976/18 12/0
R4 627/259 1039/947 10/0
R5 484/286 955/670 11/0

Total 2051/1098 4863/1875 57/7

TABLE V: The number of bit flips induced by DRAMDig
and DRAMA. Both perform 5 runs on three selected machine
settings in Table III where each run lasts 5 minutes. DRAMDig
induced significantly more bit flips than DRAMA.

VII. BITMINE EVALUATION

In this section, we evaluate BitMine on the effectiveness
of inducing bit flips by combining DRAMDig and the afore-
mentioned configurable parameters. Our experiment settings
are shown in Table IV. In particular, we have 2 DDR3-based
laptops (i.e., T1 and T2), 1 DDR3-based desktop and 2 DDR4-
based desktops. For each machine, we run BitMine for 2 days.

Specifically, BitMine applies a hammer pattern of double-
sided with 11 hammer methods and 16 data patterns against
all DDR3-based machines since clflushopt only supports
Skylake or newer microachitectures. For comparison, single-
sided and one-location hammer are used respectively in T1
test machine with 11 hammer methods but 12 data patterns
(4 data patterns, i.e., Figures 4(b)(d)(e)(g) are removed as

both hammer patterns have only one aggressor row.). Re-
garding DDR4-based machines, many-sided hammer with 13
hammer methods and 12 data patterns is fed into BitMine
as other three hammer patterns cannot induce bit flips in the
presence of Hardware Target Row Refresh (HardTRR). We
leverage TRRespass [14] to figure out the best hammer pattern,
i.e., triple-sided hammer that shows the best effectiveness in
defeating HardTRR. As aggressor rows in data patterns of
Figures 4(b)(d)(e)(g) have different data values, they are also
removed in the triple-sided hammer. In the following sections,
we show the experimental results in terms of hammer pattern,
hammer method and data pattern, respectively.

A. Hammer Method

To evaluate the hammer efficiency of different hammer
methods, we measure the CPU cycles that each method takes
to complete one hammer against one aggressor row in the
same data pattern (i.e., Figure 5(a)) and thus produce Figure 7
and Figure 8. As shown in the figures, different hammer
methods have different costs in the same machine while
the same method behaves differently in different machines.
Among the evaluated hammer methods, clflush+read,
clflushopt+read, movnti+write, movntdq+write
and all the newly identified 5 hammer methods exhibit lower
costs.

On top of that, we conduct double-sided hammer on T1–T4
test machines and triple-sided hammer on T5–T6, respectively,
using every hammer method and one same data pattern (i.e.,
Fig.4(c)), the experimental results of which are shown in
Figure 9 and Figure 10. It can be seen from the figures
that T1 is the most vulnerable among all test machines.
T5 and T6, two DDR4-based machines, are vulnerable to
almost only two hammer methods, i.e., clflush+read and
clflushopt+read. We note that the movntpd+write
and maskmovdqu+write-based hammer methods trigger 1
and 2 bit flips on T6, respectively, which are negligible.

B. Hammer Pattern

Figure 11 shows the bit flips of T1 and T6 machines caused
by different hammer patterns under different data patterns. We
choose clflush+read as the hammer method, which is
one of the most effective ones discussed in Section VII-A.
Triple-sided hammer and the other three hammer patterns are
evaluated on T6 and T1, respectively.



11

clflush+read clflush+write clflushopt+read  clflushopt+write movnti+read movnti+write movntdq+read movntdq+write
Hammer methods

0

100

200

300

400

500

600

Av
er

ag
ed

 c
os

ts
 in

 C
PU

 c
yc

le
s

T1
T2
T3
T4
T5
T6

Fig. 7: Averaged costs in CPU cycles per hammer for different hammer methods with the same data pattern. We note that
clflushopt-based hammer methods are only available in T5 and T6 test machines.

movntpd+write movntps+write movntq+write maskmovq+write maskmovdqu+write
Hammer methods

0

50

100

150

200

250

300

350

Av
er

ag
ed

 c
os

ts
 in

 C
PU

 c
yc

le
s

T1
T2
T3
T4
T5
T6

Fig. 8: Averaged costs in CPU cycles per hammer for newly identified non-temporal-store based hammer methods with the
same data pattern.

clflush+read clflush+write clflushopt+read clflushopt+write movnti+read movnti+write movntdq+read movntdq+write
Hammer methods

0

1

2

3

4

5

6

7

8

9

10

11

Bi
t f

lip
s i

n 
na

tu
ra

l l
og

ar
ith

m

 0
.0

 N
aN

 N
aN

 N
aN

 N
aN

 N
aN

 N
aN

 N
aN

 N
aN

 N
aN

 N
aN

 N
aN

 N
aN

T1
T2
T3
T4
T5
T6

Fig. 9: Bit flips in natural logarithm for different hammer methods using the same data pattern (Double-sided hammer and
triple-sided hammer are used in T1–T4 and T5–T6 machines, respectively.). We note that values of 0.0 and NaN in the bar
chart respectively represent a single bit flip and no bit flip at all.



12

movntpd+write movntps+write movntq+write maskmovq+write maskmovdqu+write
Hammer methods

0

1

2

3

4

5

6

7

8

9

10

11

12

Bi
t f

lip
s i

n 
na

tu
ra

l l
og

ar
ith

m

 N
aN

 N
aN

 N
aN

 N
aN

 N
aN

 0
.0

 N
aN

 N
aN

 N
aN

T1
T2
T3
T4
T5
T6

Fig. 10: Bit flips in natural logarithm for newly identified non-temporal-store based hammer methods using the same data
pattern (Double-sided hammer and triple-sided hammer are used in T1–T4 and T5–T6 machines, respectively.).

Fig.4(a) 4(c) 4(f) 4(h) Fig.5(a) 5(b) 5(c) 5(d) 5(e) 5(f) 5(g) 5(h)
Data patterns

0

2

4

6

8

10

Bi
t f

lip
s i

n 
na

tu
ra

l l
og

rit
hm

 N
aN

 N
aN

 N
aN

 N
aN

 N
aN

 N
aN

 N
aN

 N
aN

 N
aN

 N
aN

 N
aN

 N
aN

 N
aN

 0
.0

 N
aN

 0
.0

 0
.0

one-location hammer
single-sided hammer

double-sided hammer
triple-sided hammer

Fig. 11: Bit flips in natural logarithm for a hammer pattern in different data patterns using the same hammer method of
clflush+read. Triple-sided hammer is evaluated on T6 while the other three hammer patterns are on T1, respectively.

Fig.4(a) 4(b) 4(c) 4(d) 4(e) 4(f) 4(g) 4(h) Fig.5(a) 5(b) 5(c) 5(d) 5(e) 5(f) 5(g) 5(h)
Data patterns

0

2

4

6

8

10

Bi
t f

lip
s i

n 
na

tu
ra

l l
og

rit
hm

 0
.0

T1
T2
T3
T4
T5
T6

Fig. 12: Bit flips in natural logarithm for different patterns using the same hammer method of clflush+read. Double-sided
hammer and triple-sided hammer are used on T1–T4 and T5–T6, respectively.

As shown in the figure, there is no single bit flip for one-
location hammer in all test data patterns, indicating that the

memory controller residing T1 does not support a closed-row
or adaptive page policy [11], [35]. Besides, double-sided ham-



13

Rowhammer Detection DRAM Address Mapping Hammer Method Hammer Pattern Data Pattern
Google Project Zero [36] blind clflush single-sided & double-sided Figure 4(c)(f)

Rowhammer.js [3] DRAMA [8] clflush & clflushopt double-sided Figure 4(c)(f)
Memtest86 [37] N/A N/A double-sided N/A

BitMine DRAMDig 13 one-location/single-sided/double-sided/many-sided 16

TABLE VI: A comparison of existing Rowhammer detection tools.

mer has induced much more bit flips than single-sided hammer
in every data pattern on T1 machine. For the same hammer
pattern, a machine is more vulnerable to a subset of the test
data patterns. For instance, data patterns of Figure 4(c)(f) and
Figure 5(e)(f) are more effective in T6 compared to other data
patterns. For the same data pattern, different hammer patterns
have different effectiveness in inducing bit flips. In particular,
no bit flip is even observed using single-sided hammer for the
data pattern of Figure 4(a).

C. Data Pattern
Figure 12 shows that each test machine has a distinct

set of effective and ineffective data patterns in inducing
bit flips. Specifically, for all DDR3-based machines T1–T4,
the effective set of data patterns are: {Figure 4(c)(d)(e)(f),
Figure 5(e)(f)(g)(h)}. The respective ineffective sets of T1,
T2, T3–T4 are : {Figure 4(a)(h), Figure 5(a)(c)}, {Fig-
ure 4(a)(b)(h), Figure 5(a)(b)(d)} and {Figure 4(a)}.

Regarding DDR4-based machines, the respective effective
sets of T5 and T6 are: {Figure 4(c)(f), Figure 5(d)(e)(f)(g)(h)}
and {Figure 4(c)(f), Figure 5(e)(f)(g)(h)}. T5’s ineffective set
is same as T3–T4 but T6’s ineffective set is: {Figure 4(a)(h),
Figure 5(a)(b)(c)(d)}.

VIII. RELATED WORK

In this section, we compare BitMine to prior related works,
summarized in Table VI.

Google Project Zero published the first rowhammer de-
tection tool [36] that leveraged a clflush-based hammer
method. As this tool does not have knowledge of the DRAM
address mapping, it is inefficient and ineffective in detecting
rowhammer. Rowhammer.js [3] relied on DRAMA [8] to
uncover the DRAM address mapping and further extended
the tool of Google Project Zero with two hammer methods
(i.e. clflush and clflushopt). As discussed in Section I
and evaluated in Section VI-B, DRAMA is inefficient and
fails in generating a deterministic DRAM address mapping.
Besides, the rowhammer effectiveness of Rowhammer.js is
further limited to a couple of hammer methods and data
patterns. Memtest86 [37] is a commercial memory diagnostic
tool that incorporates a test for detecting rowhammer bit
flips [38]. Memtest86 uses only double-sided hammer for
rowhammer detection, rendering itself ineffective on present
DDR4 modules where HardTRR is enabled. In contrast, Bit-
Mine implements 4 hammer patterns, making itself effective
on both DDR3 and DDR4 modules.

IX. CONCLUSION

In this paper, we presented DRAMDig to reverse-engineer
the DRAM address mappings for different Intel-based com-
puting systems that are equipped with either DDR3 or DDR4

chips. We further extended DRAMDig to BitMine, the first
end-to-end system tool for detecting rowhammer vulnera-
bility effectively. BitMine incorporated three configurable
parameters and each has an observable effect on inducing
rowhammer bit flips. By default BitMine implemented 13
hammer methods, 4 hammer patterns and 16 data patterns.
Our experimental results showed that DRAMDig successfully
reverse-engineered the DRAM address mappings and each key
parameter in BitMine has distinct effectiveness in inducing bit
flips for different machine models.

REFERENCES

[1] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of dram disturbance errors,” in International
Symposium on Computer Architecture, 2014, pp. 361–372.

[2] M. Seaborn and T. Dullien, “Exploiting the DRAM rowhammer bug to
gain kernel privileges,” in Black Hat, 2015.

[3] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer. js: A remote
software-induced fault attack in javascript,” in Detection of Intrusions
and Malware, and Vulnerability Assessment, 2016, pp. 300–321.

[4] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice,
G. Vigna, H. Bos, K. Razavi, and C. Giuffrida, “Drammer: Deterministic
rowhammer attacks on mobile platforms,” in ACM SIGSAC Conference
on Computer and Communications Security, 2016, pp. 1675–1689.

[5] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One bit flips, one
cloud flops: Cross-vm row hammer attacks and privilege escalation,” in
USENIX Security Symposium, 2016, pp. 19–35.

[6] Y. Cheng, Z. Zhang, S. Nepal, and Z. Wang, “CATTmew: Defeating
software-only physical kernel isolation,” in IEEE Transactions on De-
pendable and Secure Computing, 2019.

[7] Z. Zhang, Y. Cheng, D. Liu, S. Nepal, Z. Wang, and Y. Yarom,
“Pthammer: Cross-user-kernel-boundary rowhammer through implicit
accesses,” in International Symposium on Microarchitecture, 2020.

[8] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “Drama:
Exploiting dram addressing for cross-cpu attacks,” in USENIX Security
Symposium, 2016, pp. 565–581.

[9] T. Moscibroda and O. Mutlu, “Memory performance attacks: Denial of
memory service in multi-core systems,” in USENIX Security Symposium,
2007.

[10] M. Wang, Z. Zhang, Y. Cheng, and S. Nepal, “Dramdig: A knowledge-
assisted tool to uncover dram address mapping,” in Design Automation
Conference, 2020.

[11] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell,
W. Schoechl, and Y. Yarom, “Another flip in the wall of rowhammer
defenses,” arXiv preprint arXiv:1710.00551, 2017.

[12] Micron, Inc., “DDR4 SDRAM MT40A2G4, MT40A1G8,
MT40A512M16 data sheet,” https://www.micron.com/products/
dram/ddr4-sdram/, 2015.

[13] JEDEC Solid State Technology Association., “Low power double
data rate 4 (LpDDR4),” https://www.jedec.org/standards-documents/
docs/jesd209-4b, 2015.

[14] P. Frigo, E. Vannacci, H. Hassan, V. van der Veen, O. Mutlu, C. Giuf-
frida, H. Bos, and K. Razavi, “TRRespass: Exploiting the many sides of
target row refresh,” in IEEE Symposium on Security and Privacy, 2020.

[15] M. Seaborn, “How physical addresses map to rows and banks
in dram,” http://lackingrhoticity.blogspot.com.au/2015/05/how-physical-
addresses-map-to-rows-and-banks.html.

[16] B. Keeth, R. J. Baker, B. Johnson, and F. Lin, DRAM circuit design:
fundamental and high-speed topics. John Wiley & Sons, 2007, vol. 13.

[17] O. Mutlu and J. S. Kim, “Rowhammer: A retrospective,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
2019.

[18] Z. Zhang, Z. Zhan, D. Balasubramanian, B. Li, P. Volgyesi, and
X. Koutsoukos, “Leveraging EM side-channel information to detect
rowhammer attacks,” in IEEE Symposium on Security and Privacy, 2019.

https://www.micron.com/products/dram/ddr4-sdram/
https://www.micron.com/products/dram/ddr4-sdram/
https://www.jedec.org/standards-documents/docs/jesd209-4b
https://www.jedec.org/standards-documents/docs/jesd209-4b
http://lackingrhoticity.blogspot.com.au/2015/05/how-physical-addresses-map-to-rows-and-banks.html
http://lackingrhoticity.blogspot.com.au/2015/05/how-physical-addresses-map-to-rows-and-banks.html


14

[19] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup est machina:
Memory deduplication as an advanced exploitation vector,” in IEEE
Symposium on Security and Privacy, 2016, pp. 987–1004.

[20] Google, Inc., “Glitch vulnerability status,” http://www.chromium.org/
chromium-os/glitch-vulnerability-status, May 2018.

[21] F. Yao, A. S. Rakin, and D. Fan, “Deephammer: Depleting the intelli-
gence of deep neural networks through targeted chain of bit flips,” in
USENIX Security Symposium, 2020.

[22] S. Hong, P. Frigo, Y. Kaya, C. Giuffrida, and T. Dumitras, , “Terminal
brain damage: Exposing the graceless degradation in deep neural net-
works under hardware fault attacks,” in USENIX Security Symposium,
2019, pp. 497–514.

[23] A. Tatar, R. K. Konoth, E. Athanasopoulos, C. Giuffrida, H. Bos, and
K. Razavi, “Throwhammer: Rowhammer attacks over the network and
defenses,” in USENIX Annual Technical Conference, 2018.

[24] S. Bhattacharya and D. Mukhopadhyay, “Curious case of rowhammer:
flipping secret exponent bits using timing analysis,” in Cryptographic
Hardware and Embedded Systems, 2016, pp. 602–624.

[25] A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “Rambleed: Reading
bits in memory without accessing them,” in IEEE Symposium on Security
and Privacy, 2020.

[26] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos,
“Flip feng shui: Hammering a needle in the software stack,” in USENIX
Security Symposium, 2016, pp. 1–18.

[27] K. A. Shutemov, “pagemap: do not leak physical addresses to non-
privileged userspace,” http://goo.gl/Zvd0qf, 2015.

[28] R. Qiao and M. Seaborn, “A new approach for rowhammer attacks,”
in IEEE International Symposium on Hardware Oriented Security and
Trust, 2016, pp. 161–166.

[29] Micron, Inc., “DDR3 SDRAM MT41K2G4RKB, MT41K1G8TRF,
MT41K512M16VRN data sheet,” https://www.micron.com/products/
dram/ddr3-sdram/, 2015.

[30] Intel, Inc., “The role of ecc memory,” https://www.intel.com/content/
www/us/en/workstations/workstation-ecc-memory-brief.html, 2015.

[31] ——, “Intel 64 and IA-32 architectures software developer’s manual
combined volumes: 1, 2a, 2b, 2c, 3a, 3b and 3c,” Oct. 2011.

[32] Y. Cheng, Z. Zhang, S. Nepal, and Z. Wang, “Cattmew: Defeating
software-only physical kernel isolation,” IEEE Transactions on Depend-
able and Secure Computing, 2019.

[33] S. Ji, Y. Ko, S. Oh, and J. Kim, “Pinpoint rowhammer: Suppressing
unwanted bit flips on rowhammer attacks,” in Asia Conference on
Computer and Communications Security, 2019, pp. 549–560.

[34] J. S. Kim, M. Patel, A. G. Yaglikci, H. Hassan, R. Azizi, L. Orosa, and
O. Mutlu, “Revisiting rowhammer: An experimental analysis of modern
dram devices and mitigation techniques,” in International Symposium
on Computer Architecture, 2020.

[35] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “Atlas: A scalable
and high-performance scheduling algorithm for multiple memory con-
trollers,” in High Performance Computer Architecture, 2010, pp. 1–12.

[36] “Test dram for bit flips caused by the rowhammer problem,” https://
github.com/google/rowhammer-test, 2014.

[37] “Memtest86,” https://www.memtest86.com.
[38] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,

K. Lai, and O. Mutlu, “Rowhammer memtest,” https://github.com/CMU-
SAFARI/rowhammer, Sep. 2014.

Zhi Zhang is a postdoctoral fellow at CSIRO
Data61. He received his Ph.D. in Computer Science
from the University of New South Wales. His re-
search interests are in the areas of system security,
rowhammer and adversarial artificial intelligence.

Wei He received the B.S. degree from Tongji Uni-
versity in 2019, and now studies for a master’s de-
gree at University of Chinese Academy of Sciences
and SKLOIS, Institute of Information Engineering,
CAS. His research interests include system security.

Yueqiang Cheng is head of security research at
NIO. He earned his Ph.D. degree in School of
Information Systems from Singapore Management
University under the guidance of Professor Robert
H. Deng and Associate Professor Xuhua Ding. His
research interests are system security, trustworthy
computing, software-only root of trust and software
security.

Wenhao Wang received the B.S. degree from Ocean
University of China in 2009, and the Ph.D. degree
from University of Chinese Academy of Sciences
in 2015. He is an Associate Professor in Institute
of Information Engineering, Chinese Academy of
Sciences. His research interests include Cryptogra-
phy, System Security, Cloud Security and Trusted
Execution Technologies.

Yansong Gao received his M.Sc degree from Uni-
versity of Electronic Science and Technology of
China in 2013 and Ph.D degree from the School of
Electrical and Electronic Engineering in the Univer-
sity of Adelaide, Australia, in 2017. He is now with
School of Computer Science and Engineering, Nan-
Jing University of Science and Technology, China.
His current research interests are AI security and
privacy, hardware security and system security.

Minghua Wang is a Staff Software Engineer of
Baidu X-Lab. He obtained his Ph.D degree from
University of Chinese Academy of Science. His
research interests lie in program analysis, software
security and side-channel attacks and mitigations.

Kang Li is the director of Baidu X-Lab. He received
his B.S degree from Tsinghua University, Master
degree from Yale Law School, and Ph.D degree from
Oregon Graduate Institute at OHSU. His research
interests are system security and privacy.

Surya Nepal is a Senior Principal Research Scientist
at CSIRO Data61 and leads the distributed system
security research group. His main research focus
has been in the area of distributed systems, with
a specific focus on security, privacy and trust. He
has more than 200 peer-reviewed publications to his
credit. He currently serves as an associate editor in
IEEE Transactions on Service Computing and IEEE
Transactions on Dependable and Secure Computing.

http://www.chromium.org/chromium-os/glitch-vulnerability-status
http://www.chromium.org/chromium-os/glitch-vulnerability-status
http://goo.gl/Zvd0qf
https://www.micron.com/products/dram/ddr3-sdram/
https://www.micron.com/products/dram/ddr3-sdram/
https://www.intel.com/content/www/us/en/workstations/workstation-ecc-memory-brief.html
https://www.intel.com/content/www/us/en/workstations/workstation-ecc-memory-brief.html
https://github.com/google/rowhammer-test
https://github.com/google/rowhammer-test
https://www.memtest86.com
https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/rowhammer


15

Yang Xiang received his PhD in Computer Science
from Deakin University, Australia. He is currently a
full professor and the Dean of Digital Research &
Innovation Capability Platform, Swinburne Univer-
sity of Technology, Australia. His research interests
include cyber security, which covers network and
system security, data analytics, distributed systems,
and networking. He is also leading the Blockchain
initiatives at Swinburne. In the past 20 years, he

has published more than 300 research papers in
many international journals and conferences. He is

the Editor-in-Chief of the SpringerBriefs on Cyber Security Systems and
Networks. He serves as the Associate Editor of IEEE Transactions on De-
pendable and Secure Computing, IEEE Internet of Things Journal, and ACM
Computing Surveys. He served as the Associate Editor of IEEE Transactions
on Computers and IEEE Transactions on Parallel and Distributed Systems.
He is the Coordinator, Asia for IEEE Computer Society Technical Committee
on Distributed Processing (TCDP). He is a Fellow of the IEEE.


	Introduction
	Background
	Dynamic Random-Access Memory
	Rowhammer

	BitMine
	Threat Model and Assumptions
	Overview

	DRAMDig
	Domain Knowledge
	A Timing Primitive
	Row & Column Bit Detection (Coarse-Grained)
	Bank Address Function Resolving
	Row & Column Bit Detection (Fine-Grained)

	Key Configurable Parameters
	Hammer Methods
	Hammer Pattern
	Data Pattern

	DRAMDig Evaluation
	Uncovered DRAM Address Mappings
	A comparison of DRAMDig and DRAMA

	BitMine Evaluation
	Hammer Method
	Hammer Pattern
	Data Pattern

	Related Work
	Conclusion
	References
	Biographies
	Zhi Zhang
	Wei He
	Yueqiang Cheng
	Wenhao Wang
	Yansong Gao
	Minghua Wang
	Kang Li
	Surya Nepal
	Yang Xiang


