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Abstract. In this paper, we describe a new variant of cube attacks called
correlation cube attack. The new attack recovers the secret key of a cryp-
tosystem by exploiting conditional correlation properties between the
superpoly of a cube and a specific set of low-degree polynomials that we
call a basis, which satisfies that the superpoly is a zero constant when all
the polynomials in the basis are zeros. We present a detailed procedure of
correlation cube attack for the general case, including how to find a basis
of the superpoly of a given cube. One of the most significant advantages
of this new analysis technique over other variants of cube attacks is that it
converts from a weak-key distinguisher to a key recovery attack.

As an illustration, we apply the attack to round-reduced variants of
the stream cipher Trivium. Based on the tool of numeric mapping intro-
duced by Liu at CRYPTO 2017, we develop a specific technique to effi-
ciently find a basis of the superpoly of a given cube as well as a large set
of potentially good cubes used in the attack on Trivium variants, and
further set up deterministic or probabilistic equations on the key bits
according to the conditional correlation properties between the super-
polys of the cubes and their bases. For a variant when the number of
initialization rounds is reduced from 1152 to 805, we can recover about
7-bit key information on average with time complexity 244, using 245

keystream bits and preprocessing time 251. For a variant of Trivium
reduced to 835 rounds, we can recover about 5-bit key information on
average with the same complexity. All the attacks are practical and fully
verified by experiments. To the best of our knowledge, they are thus far
the best known key recovery attacks for these variants of Trivium, and
this is the first time that a weak-key distinguisher on Trivium stream
cipher can be converted to a key recovery attack.
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1 Introduction

In recent years, cube attacks [11] and their variants [2,12,18] have been
proven powerful in the security analysis of symmetric cryptosystems, such as
Trivium [2,8,11,15], Grain-128 [9,12,16] and Keccak sponge function
[3,10,18], producing the best cryptanalytic results for these primitives
up to the present. Cube attacks were introduced by Dinur and Shamir at
EUROCRYPT 2009 [11]. They are a generalization of chosen IV statistical
attacks on stream ciphers [13,14,27], as well as an extension of higher order
differential cryptanalysis [21] and AIDA [32]. The attacks treat a cryptosystem
as a black-box polynomial. An attacker evaluates the sum of the output of poly-
nomials system with a fixed private key over a subset of public variables, called a
cube, in the hope of finding a linear coefficient of the term with maximum degree
over the cube, referred to as a superpoly. The basic idea of cube attacks is that
the symbolic sum of all the derived polynomials obtained from the black-box
polynomial by assigning all the possible values to the cube variables is exactly
the superpoly of the cube. The target of cube attacks is to find a number of
linear superpolys on the secret variables and recover the secret information by
solving a system of linear equations. In [11], the techniques was applied to a
practical full key recovery on a variant of Trivium reduced to 767 rounds.

Since the seminal work of Dinur and Shamir, several variants of cube attacks
have been proposed, including cube testers [2], dynamic cube attacks [12] and
conditional cube attacks [18]. A cube tester [2] can detect the nonrandomness in
cryptographic primitives by extracting the testable properties of the superpoly,
such as unbalance, constantness and low degree, with the help of property testers.
However a cube tester does not directly lead to key recovery attacks. Dynamic
cube attacks [12] improve upon cube testers by introducing dynamic variables.
When a set of conditions involving both the key bits and the dynamic variables
are satisfied, the intermediate polynomials can be simplified, and cube testers
(with assigned values to satisfy the conditions) are used to extract the nonran-
domness of the cipher output. In this respect, a system of equations in the key
bits and the dynamic variables are established. The discovery of the conditions
mostly attributes to the manual work of analyzing the targeted cipher structure.
Conditional cube attacks [18] work by introducing conditional cube variables and
imposing conditions to restrain the propagation of conditional cube variables.
Similar to dynamic cube attacks, the conditions used in conditional cube attacks
are required to be dependent on both public bits and secret bits.

A key step to a successful cube-like attack is the search of good cubes and the
corresponding superpolys during a precomputation phase. When such cubes are
found, the attacker simply establishes and solves a polynomial system regarding
the private key during the online phase. When cube attacks were first introduced
in [11], the cryptosystems were regarded as black-box, and the authors used
random walk to search for cubes experimentally. As the sum over a cube of
size d involves 2d evaluations under the fixed key, the search of cubes is time-
consuming and the size of the cube is typically around 30, which restricts the
capability of the attacker for better cubes. In [1] Aumasson et al. proposed an
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evolutionary algorithm to search for good cubes. Greedy bit set algorithm was
applied by Stankovski in [28] to finding cubes in distinguishers of stream ciphers.
The authors of [15] and [23] both used the union of two subcubes to generate
larger cube candidates. With the improved cubes of size between 34 and 37, a
key recovery attack on Trivium reduced to 799 rounds [15] and a distinguisher
on Trivium reduced to 839 rounds [23] are proposed.

Recently two works on cube attacks using large cubes of size greater than
50 were presented at CRYPTO 2017. Both of them treat the cryptosystems as
non-blackbox polynomials. The one by Todo et al. [30] uses the propagation of
the bit-based division property (see also [29,31]) of stream ciphers, and presents
possible key recovery attacks on 832-round Trivium, 183-round Grain-128a and
704-round ACORN with the cubes of sizes 72, 92 and 64 respectively. The other
one by Liu [22] uses numeric mapping to iteratively obtain the upper bound
on the algebraic degree of an NFSR-based cryptosystem. Based on the tool
of numeric mapping, cube testers are found for 842-round Trivium, 872-round
Kreyvium, 1035-round TriviA-SC (v1) and 1047-round TriviA-SC (v2) with
the cubes of sizes 37, 61, 63 and 61 resepectively [22].

Our Contributions. In this paper, we propose a new variant of cube attacks,
named correlation cube attack. The general idea of this new attack is to exploit
conditional correlation properties between the superpoly of a cube and a specific
set of low-degree polynomials that we call a basis. The basis satisfies that the
superpoly is a zero constant when all the polynomials in the basis are zeros. If
the basis involves secret bits and has non-zero correlation with the superpoly,
we can recover the secret information by solving probabilistic equations.

The attack consists of two phases: the preprocessing phase and online phase.
The preprocessing phase tries to find a basis of a superpoly and its conditional
correlation properties with the superpoly. The online phase targets at recovering
the key by setting up and solving systems of probabilistic equations. We give a
detailed procedure of both phases for the general case, including how to find a
basis of the superpoly of a given cube.

As an illustration, we apply the attack to two reduced variants of the well-
known stream cipher Trivium [8], and obtain the best known key recovery
results for these variants. Trivium uses an 80-bit key and an 80-bit initial
value (IV). We present two attacks for a variant of Trivium when the num-
ber of initialization rounds is reduced from 1152 to 805. The first attack recovers
about 7 equations on the key bits by 24 trials on average, i.e., 3-bit key informa-
tion, using 237-bit operations and 237-bit data, at the expense of preprocessing
time 247. In the second attack, we can recover about 14 equations on the key bits
by 27 trials on average, i.e., 7-bit key information, with time complexity 244 and
245 keystream bits, at the expense of preprocessing time 251. For a variant of
Trivium reduced to 835 rounds, we can recover about 11 equations by 26 trials
on average with the same complexity, that is, we can recover about 5-bit key
information on average. The equations we recovered are linear or quadratic, and
the quadratic ones can be easily linearized after guessing a few bits of the key.
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All the attacks are directly valid for more than 30% of the keys in our experi-
ments, and it also works for most of the other keys at the cost of recovering less
key information.

Our results are summarized in Table 1 with the comparisons of the previous
key recovery attacks on Trivium. In this table, by “Time” we mean the time
complexity of a full key recovery. The attack time 299.5 [24] of the full cipher is
measured by bit operations, while the others are measured by cipher operations.
The previous best known practical partial key recovery is applicable to a variant
of Trivium reduced to 799 rounds, proposed by Fouque and Vannet [15]. The
previous best known impractical (and possible) partial key recovery that is faster
than an exhaustive search is applicable to a variant of Trivium reduced to 832
rounds, presented by Todo et al. [30]. This was shown by recovering the superpoly
of a cube of size 72 with preprocessing time 277. It is possible to extract at most
one key bit expression (if the superpoly depends on the key). At the same time,
it is also possible that it is a distinguisher rather than a key recovery (when
the superpoly does not depend on the key). In this paper, we convert from a
practical weak-key distinguisher to a practical partial key recovery attack, which
is applicable to a variant of Trivium reduced to 835 rounds.

Table 1. Key recovery attacks on round-reduced Trivium

#Rounds Preproc Data Time Ref

576 - 212 233 [32]

672 - 215 255 [14]

735 - 229 230 [11]

767 - 234 236 [11]

784 - 239 238 [15]

799 - 240 262 [15]

805 247 237 277 Section 4.3

805 251 244 273 Section 4.5

832 277 272 N.A [30]

835 251 244 275 Section 4.4

Full - 261.5 299.5 [24]

Full - - 280 Brute Force

The first and most critical steps in our attack are how to find good cubes and
their bases. Benefited from the tool of numeric mapping [22], one can evaluate
an upper bound on the algebraic degree of internal state of Trivium in linear
running time. Based on this tool, we specialize the techniques to efficiently find
a basis of the superpoly of a given cube as well as a large set of potentially good
cubes. After this, we evaluate the conditional probability Pr(g = 0|fc(key, ·) ≡ 0)
and Pr(g = 1|fc(key, ·) �≡ 0) for a random fixed key, where g is a function
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depending on key bits in the basis of the superpoly fc of a cube c and fc(key, ·)
denotes the function fc restricted at a fixed key. Finally, we record all the equa-
tions with high probability, and use them to recover the key. In the attacks,
we use up to 54 cubes of sizes 28, 36 or 37. While we have found a thousand
potentially favorite cubes with sizes 36 and 37 for Trivium reduced to from 833
to 841 rounds, we can only make use of a small number of them in our attacks
due to a limited computation resource.

Besides, we also partially apply our techniques to the stream ciphers TriviA-
SC [5,6] and Kreyvium [4]. We have found some cubes whose superpolys after
1047 and 852 rounds have a low-degree basis with a few elements for TriviA-SC
and Kreyvium respectively. The cubes for TriviA-SC have size larger than 60,
and for Kreyvium the size is at least 54. Though we are unable to fully verify
the validity of the attack on TriviA-SC and Kreyvium, we believe that there
is a high chance of validness due to their similar structures with Trivium.

Related Work. Similar to dynamic cube attacks and conditional cube attacks,
correlation cube attacks recover the key by exploiting cube testers with con-
straints. Dynamic cube attacks [9,12] was applied to the full Grain-128 [16],
while conditional cube attacks [18] was applied to round-reduced variants of
Keccak sponge function [3]. Unlike these attacks, however, the new attacks
do not require the conditions to be dependent on public bits. The conditions
imposed on conditional cube variables in conditional cube attacks also form a
basis of the superpoly of a cube. Therefore, correlation cube attacks can be
considered as a generalization of conditional cube attacks.

Actually, the idea of assigning (dynamic) constraints to public variables and
using them to recover key bits was earlier appeared in conditional differential
attacks, which was introduced by Knellwolf, Meier and Naya-Plasencia at ASI-
ACRYPT 2010 [19]. The authors classified the conditions into three types:

– Type 0 conditions only involve public bits;
– Type 1 conditions involve both public bits and secret bits;
– Type 2 conditions only involve secret bits.

They exploited type 2 conditions to derive key recovery attacks based on hypoth-
esis tests, as well as type 1 conditions to recover the key in another different way.
This technique was applied to reduced variants of a few ciphers, including Grain-
v1 [17], Grain-128 [16] and the block cipher family KATAN/KTANTAN [7].
Correlation cube attacks also exploit type 1 and type 2 conditions to derive key
recovery attacks, while the underlying idea is very different from the work of [19].
Our techniques for finding a basis of the superpoly of a cube are more related to
the automatic strategies for analyzing the conditions of higher order derivatives
[20], which were exploited to derive weak-key distinguishing attacks on reduced
variants of Trivium. Nevertheless, the ideas are still different, and our strategies
are more customized and suitable for key recovery attacks.
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Organization. The rest of this paper is structured as follows. In Sect. 2, the
basic definitions, notations, and background are provided. Section 3 shows the
general framework of correlation cube attack, while its applications to Trivium
are given in Sect. 4. Section 5 concludes the paper.

2 Preliminaries

Boolean Functions and Algebraic Degree. Let F2 denote the binary field
and F

n
2 the n-dimensional vector space over F2. An n-variable Boolean function

is a mapping from F
n
2 into F2. Denote by Bn the set of all n-variable Boolean

functions. An n-variable Boolean function f can be uniquely represented as a
multivariate polynomial over F2,

f(x1, x2, · · · , xn) =
⊕

c=(c1,··· ,cn)∈F
n
2

ac

n∏

i=1

xci
i , ac ∈ F2,

called the algebraic normal form (ANF). The algebraic degree of f , denoted by
deg(f), is defined as max{wt(c) | ac �= 0}, where wt(c) is the Hamming weight of c.

Decomposition and Basis of Boolean Functions. Given a Boolean function
f , we call f =

⊕u
i=1 gi ·fi a decomposition of f , and G = {g1, g2, · · · , gu} a basis

of f . It is clear that g =
∏u

i=1(gi + 1) is an annihilator of f , that is, g · f = 0.

Cube Attacks and Cube Testers. Given a Boolean function f and a term
tI containing variables from an index subset I that are multiplied together, the
function can be written as the sum of terms which are supersets of I and terms
that miss at least one variable from I,

f(x1, x2, · · · , xn) = fS(I) · tI ⊕ q(x1, x2, · · · , xn),

where fS(I) is called the superpoly of I in f . The basic idea of cube attacks
[11] and cube testers [2] is that the symbolic sum of all the derived polynomials
obtained from the function f by assigning all the possible values to the subset of
variables in the term tI is exactly fS(I). The target of cube attacks is finding a
set of linear (or low-degree) functions fS ’s on the secret key and recovering the
key by solving this linear (or low-degree) system. Cube testers work by evaluating
superpolys of carefully selected terms tI ’s which are products of public variables
(e.g., IV bits), and trying to distinguish them from a random function. Especially,
the superpoly fS(I) is equal to a zero constant, if the algebraic degree of f in
the variables from I is smaller than the size of I.

NumericMapping. Let f(x) =
⊕

c=(c1,··· ,cn)∈F
n
2

ac

∏n
i=1 xci

i be a Boolean func-
tion on n variables. The numeric mapping [22], denoted by DEG, is defined as

DEG : Bn × Z
n → Z,

(f,D) �→ max
ac �=0

{
n∑

i=1

cidi},
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where D = (d1, d2, · · · , dn) and ac’s are coefficients of the ANF of f . Let
gi(1 ≤ i ≤ m) be Boolean functions on m variables, and denote deg(G) =
(deg(g1),deg(g2), · · · ,deg(gn)) for G = (g1, g2, · · · , gn). The numeric degree of
the composite function h = f ◦G is defined as DEG(f,deg(G)), denoted by DEG(h)
for short. The algebraic degree of h is always less than or equal to the numeric
degree of h. The algebraic degrees of the output bits and the internal states
can be estimated iteratively for NFSR-based cryptosystems by using numeric
mapping [22].

3 Correlation Cube Attacks

In this section, we propose a new model for cube attacks, called correlation
cube attack. It is a hybrid of correlation attacks [25] and cube attacks [11]. The
attacked cryptosystem is supposed to be a modern symmetric-key cryptosystem.
The general idea is to find a low-degree decomposition of the superpoly over a
given cube, evaluate the correlation relations between the low-degree basis and
the superpoly, and recover the key by solving systems of probabilistic equations.
The low-degree decomposition is based on an upper bound on the algebraic
degree and determines whether the superpoly is a zero constant when imposing
some conditions.

The attack consists of two phases, the preprocessing phase and online phase.
The preprocessing phase tries to find a basis of a superpoly and its correlation
properties with the superpoly. The online phase targets at recovering the key by
setting up and solving systems of probabilistic equations. In the following, we
will give the details of the attack.

3.1 Preprocessing Phase

The procedure of preprocessing phase of the attack is depicted as Algorithm 1.
In this phase, we can choose the input to the cipher, including the secret and
public bits. First we generate a set of cubes which are potentially good in the
attacks. Then for each cube c, we use a procedure Decomposition to find a low-
degree basis of the superpoly fc of c in the output bits of the cipher. The details
of this procedure will be discussed later. If a basis of fc is found, we calculate
the conditional probability Pr(g = b|fc) for each function g in the basis. More
exactly, we compute the values of the superpoly fc by choosing random keys
and random values of free non-cube public bits, and evaluate the conditional
probability Pr(g = 0|fc(key, ·) ≡ 0) and Pr(g = 1|fc(key, ·) �≡ 0) for a random
key, where fc(key, ·) denotes the function fc restricted at a fixed key. Finally,
we record the set of (c, g, b) that satisfies Pr(g = b|fc) > p, i.e.,

Ω = {(c, g, b)|Pr(g = b|fc) > p}.

Note that if g depends on both key bits and public bits, the attack will
become more efficient, at least not worse, than the case that g depends only
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on key bits (which can naturally be used to mount weak-key distinguishing
attacks). A distinguishing attack is a much weaker attack compared to a key
recovery attack, while a weak-key distinguishing attack is even weaker than
a normal distinguishing attack. To illustrate how to convert from a weak-key
distinguishing attack to a key recovery attack, we assume the weak case: g only
depends on key bits (if not, we can set the public bits in g to constants).

Algorithm 1. Correlation Cube Attacks (Preprocessing Phase)
1: Generate a cube set C;
2: For each cube c in C do:
3: Qc ← Decomposition(c), and goto next c if Qc is empty; /* try to find a

basis of the superpoly fc of c in the output bits of the cipher */

4: Estimate the conditional probability Pr(g = b|fc) for each function g in the
basis Qc of the superpoly fc, and select (c, g, b) that satisfies Pr(g = b|fc) > p.

Example 1. Given a Boolean polynomial f on five public variables v =
(v1, v2, v3, v4, v5) and five secret variables x = (x1, x2, x3, x4, x5),

f(v, x) = f7(v5, x)v1v2v3v4 + f6(v5, x)v1v2v4
+ f5(v5, x)v2v3v4 + f4(v5, x)v1v4
+ f3(v5, x)v2v4 + f2(v5, x)v3
+ f1(v5, x)v4 + f0(v5, x)

and
f7(v5, x) = h1(v5, x2, x3, x4, x5)x1 + h2(v5, x1, x2, x3, x4)x5,

where h1, h2 and fi(0 ≤ i ≤ 6) are arbitrary Boolean functions. We can build
a weak-key cube tester for the polynomial f , by using the cube {v1, v2, v3, v4}
under the conditions x1 = x5 = 0, while it seems to be immune to cube or
dynamic cube attacks. To convert from a weak-key cube tester to a key recovery,
we test the correlation properties between the superpoly f7 and its basis {x1, x5}.
We observe the values of f7(v5, x) for v5 = 0, 1, and estimate the conditional
probability

Pr(xi = 0|f7(0, x) = f7(1, x) = 0)

and
Pr(xi = 1|f7(0, x) �= 0 or f7(1, x) �= 0)

for i = 1, 5. Noting that (x1 + 1)(x5 + 1)f7 = 0, we also have

(x1 + 1)(x5 + 1) = 0 if f7(0, x) �= 0 or f7(1, x) �= 0.

This allows us to derive information regarding the secret key.
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Now we explain how to find a basis of the superpoly fc for a given cube c. The
procedure Decomposition is described in Algorithm 2. The main idea is to make
use of the coefficients Qt of the terms with maximum degree on cube variables in
the bits st of the internal state at the first rounds of the attacked cipher (t ≤ N0).
Note that it is highly possible that fc depends on these coefficients. To find a set
Q such that fc =

⊕
g∈Q g · fg, we first annihilate all the coefficients in Qt with

1 �∈ Qt for all t ≤ N0, and then determine whether fc is a zero constant. Once
we detect that the algebraic degree of an output bit on cube variables is less
than the size of c, which implies fc = 0, we obtain a basis Q =

⋃
t≤N0|1 �∈Qt

Qt

for fc. Then we minimize the number of elements in Q by removing redundant
equations one by one. Finally, the procedure returns the minimum basis Q.

Algorithm 2. Decomposition
Require: a cube c of size n
1: Set Q to the empty set and X to the variable set {xi|i ∈ c};

/∗ find a basis Q ∗/

2: For t from 0 to N0 do:

3: Compute the ANF of st and set dt = deg(st, X);
4: Set Qt to the set of the coefficients of all the terms with degree dt in the

ANF of st;

5: If dt ≥ 1 and 1 �∈ Qt, then set Q = Q ∪ Qt and dt = deg(s′
t, X), where s′

t is
the function formed by removing all the terms with degree dt from st;

6: Given {dt} and under the conditions that g = 0 for each g ∈ Q, find an upper
bound d(Q) on the degree of the N -round output bit;

7: If d(Q) ≥ n, then return ∅;
/∗ minimize the basis Q ∗/

8: Minimize N0 such that d(Q) < n, and generate a new Q;
9: For each g in Q do:

10: Set Q′ = Q \ {g};

11: For t ≤ N0, if zero(Q′) ⊆ zero(Qt) then set dt = deg(s′
t, X), otherwise set

dt = deg(st, X), where zero(Q) is the solution set of {g = 0|g ∈ Q};
12: If d(Q′) < n, then set Q = Q′;
13: return Q.

For explanation of Algorithm 2, we give an example on a nonlinear feedback
shift register (NFSR) in the following.

Example 2. Let st = st−6st−7 + st−8 be the update function of an NFSR with
size 8. Let (s0, s1, · · · , s7) = (x1, x2, x3, x4, v1, v2, v3, 0), and X = {v1, v2, v3} be
the cube variables. Taking t = 10 for example, we compute s10 = s4s3 + s2 =
v1x4 + x3, then have d10 = 1, Q10 = {x4} and s′

10 = x3. Since 1 �∈ Q10, we set
Q = Q ∪ Q10 and d10 = 0. After computations for t ≤ N0 = 17, we obtain

Q = Q10 ∪ Q16 ∪ Q17 = {x4, x2x4 + x3x4, x3 + x4},

(d0, d1, · · · , d17) = (0, 0, 0, 0, 1, 1, 1,−∞, 0, 0, 0, 2, 2, 1, 1, 0, 0, 1).
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For N = 29, we find an upper bound d(Q) = 2 on the algebraic degree of sN

by applying the numeric mapping. We can check that 17 is the minimum N0 such
that d(Q) < n = 3. After minimizing the basis Q, we obtain Q = {x4, x3 + x4}.

Actually, the ANF of s29 is v1v2v3(x2x3x4 + x1x3 + x1x4 + x2x4)
+v1v3(x2x3x4 +x1x4)+v3(x2x3x4 +x1x2)+v2, and the coefficient of the maxi-
mum term v1v2v3 is fc = x2x3x4+x1x3+x1x4+x2x4, which will be annihilated
when x4 = x3 + x4 = 0. We can see that Q is a basis of the superpoly fc.

Complexity. It is hard to evaluate the complexity of the step for generating
good cubes. How to find favorite cubes is still an intractable problem in cube
attacks. The time complexity of Decomposition is TN0 + nQ · TN , where nQ is
the size of the primary basis

⋃
t≤N0|1 �∈Qt

Qt, TN0 is the time for computing this
basis (Line 2–5 in Algorithm 2), and TN is the time complexity of finding an
upper bound on the algebraic degree of the N -round output bits. The estimation
of the conditional probability Pr(g = b|fc) for a cube c of size n needs about
α · 2n cipher encryption operations, when using α values of fc in the estimation.
The total time complexity of preprocessing phase is thus about

nC(TN0 + nQ · TN + α · 2n),

where nC is the number of cubes in C, not taking into account the time for
generating the cube set C.

3.2 Online Phase

The procedure of online phase of the attack is depicted in Algorithm3. In the
online phase, the key is unknown, and we can only control the public bits. We
first derive two sets of probabilistic equations according to the ciphertexts (or
keystream bits), and then repeatedly solve a system consisting of a part of these
equations until the correct key is found. In preprocessing phase, we have obtained
a set Ω of (c, g, b) that satisfies Pr(g = b|fc) > p. In online phase, for each cube
c, we test whether its superpoly fc is a zero constant by computing α values of fc

over the cube with different non-cube public bits. If fc is not a zero constant, we
derive new equations g = 1 with (c, g, 1) ∈ Ω; otherwise, we record the equations
g = 0 with (c, g, 0) ∈ Ω. After all the cubes are handled, we derive two sets of
equations, G0 = {g = 0|(c, g, 0) ∈ Ω, fc = 0} and G1 = {g = 1|(c, g, 1) ∈ Ω, fc �=
0}. For the case that {g|g = 0 ∈ G0 and g = 1 ∈ G1} is not empty, we can use
the one with higher probability between g = 0 and g = 1 or neither of them.
We then randomly choose r0 equations from G0 and r1 equations from G1, solve
these r0 + r1 equations and check whether the solutions are correct. Repeat this
step until the correct key is found.

Complexity. The loop for deriving the equation sets G0 and G1 requires at
most nCα2n bit operations, where nC is the number of cubes in C. Step 7 runs
in time 2�key−(r0+r1), where �key is the size of the key, when the equations are
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Algorithm 3. Correlation Cube Attacks (Online Phase)
Require: a cube set C and Ω = {(c, g, b)| Pr(g = b|fc) > p}
1: Set G0 and G1 to empty sets;
2: For each cube c in C do:
3: Randomly generate α values from free non-cube public bits, and request

α2n keystream bits (or ciphertexts) corresponding to the cube c of size n and
these non-cube public values;

4: Compute the α values of the superpoly fc over the cube c;
5: If all the values of fc equal 0, then set G0 = G0 ∪ {g = 0|(c, g, 0) ∈ Ω},

otherwise set G1 = G1 ∪ {g = 1|(c, g, 1) ∈ Ω};
6: Deal with the case that {g|g = 0 ∈ G0 and g = 1 ∈ G1} is not empty;
7: Randomly choose r0 equations from G0 and r1 equations from G1, solve these

r0 + r1 equations and check whether the solutions are correct;
8: Repeat Step 7 if none of the solutions is correct.

balanced and easy to be solved. We can estimate the probability q > p(r0+r1)

that a trial successes, so the expected number of trials is q−1 < p−(r0+r1). Here
we require that the total number of equations in G0 and G1 is greater than
p−(r0+r1). The expected time of online phase is thus less than

nCα2n + p−(r0+r1)2�key−(r0+r1).

3.3 Discussion

The crux point of the attack is finding a low-degree basis of the superpoly over
a given cube, that is, finding Q with low degree such that

fc =
⊕

g∈Q

g · fg.

Theoretical Bound on the Probability. We first discuss the conditional
probability Pr(g = 1|fc �= 0), i.e., for the case that fc is not a zero constant
for a fixed key. For any x such that fc(x) �= 0, there is at least one g such that
g(x) = 1, that is,

∏
g∈Q(g(x)+ 1) = 0. Specially, if Q contains only one function

g, then g(x) = 1 holds with probability 1. If Q contains two functions g1 and g2,
then we have g1(x) = 1 or g2(x) = 1, and thus at least one of them holds with
probability ≥ 2

3 . Generally, if Q contains nQ functions, then there is at least one
g(x) = 1 that holds with probability ≥ 2nQ−1

2nQ−1
, under the condition fc �= 0.

The conditional probability p0 = Pr(g = 0|fc = 0) can be computed
according to p1 = Pr(g = 1|fc �= 0) and the probability γ that fc �= 0, i.e.,
p0 =

1
2−(1−p1)γ

1−γ .
When the upper bound d(Q) on algebraic degree of fc restricted to {g =

0|g ∈ Q} is tight in Algorithm 2, we expect that fg is not a zero constant for
g ∈ Q. If all the functions fg’s depend on the free non-cube bits, then fc is
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a zero constant for a fixed key if and only if g = 0 holds with probability 1
(or close to 1) for all g ∈ Q.

Assuming that the event of (g, f1) and the event of (g, f2) are statistically
independent, we have

Pr(g = b|f1, f2) =
Pr(g = b, f1, f2)

Pr(g = b, f1, f2) + Pr(g = b + 1, f1, f2)

=
Pr(g = b, f1) Pr(g = b, f2)

Pr(g = b, f1) Pr(g = b, f2) + Pr(g = b + 1, f1) Pr(g = b + 1, f2)

=
Pr(g = b|f1) Pr(g = b|f2)

Pr(g = b|f1) Pr(g = b|f2) + Pr(g = b + 1|f1) Pr(g = b + 1|f2) .

Denote by ε1 and ε2 the correlation coefficients of g = b given f1 and f2 respec-
tively, i.e., Pr(g = b|fi) = 1

2 (1 + εi) for i = 1, 2. Then

ε =
ε1 + ε2
1 + ε1ε2

is the correlation coefficient of the event that g = b given both f1 and f2.
Specially, if ε1 and ε2 have the same sign, then

|ε| = | ε1 + ε2
1 + ε1ε2

| ≥ max{|ε1|, |ε2|}.

Our experiments on Trivium show that the assumption is reasonable. In
fact, we do not expect that the assumption is perfectly true. The independence
assumption is used to guarantee a bound on correlation coefficient. We believe
the bound is sound, at least for the case that the correlations have the same
sign, even if the assumption is not true in general.

Modifications of the Attack. We may slightly modify the online phase of
the attack if necessary. As mentioned above, for the case that fc is not a zero
constant for a fixed key, we have

∏
g∈Q(g(x) + 1) = 0. We may make use of

this kind of equations at Step 7 in Algorithm 3. Another modification is to use
two different threshold probabilities separately for the equation sets G0 and G1

rather than the same one p.

4 Applications to Trivium Stream Cipher

In this section, we first give a brief description of the stream cipher Trivium [8],
as well as recall the technique for estimating the degree of Trivium based on
numeric mapping, and then apply the correlation cube attack to two variants of
Trivium when the number of initialization rounds is reduced from 1152 to 805
and 835. At the end of this section, we will discuss the possible improvements,
and partially apply our analysis techniques to the stream ciphers TriviA-SC
[5,6] and Kreyvium [4].
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4.1 Description of Trivium

A Brief Description of Trivium-Like Ciphers. Let A, B and C be three
registers with sizes of nA, nB and nC , denoted by At, Bt and Ct their corre-
sponding states at clock t,

At = (xt, xt−1, · · · , xt−nA+1), (1)
Bt = (yt, yt−1, · · · , yt−nB+1), (2)
Ct = (zt, zt−1, · · · , zt−nC+1), (3)

and respectively updated by the following three quadratic functions,

xt = zt−rC
· zt−rC+1 + �A(s(t−1)), (4)

yt = xt−rA
· xt−rA+1 + �B(s(t−1)), (5)

zt = yt−rB
· yt−rB+1 + �C(s(t−1)), (6)

where 1 ≤ rλ < nλ for λ ∈ {A,B,C} and �A, �B and �C are linear functions. We
denote At[i] = xi, Bt[i] = yi and Ct[i] = zi, and define g

(t)
A = zt−rC

· zt−rC+1,
g
(t)
B = xt−rA

·xt−rA+1 and g
(t)
C = yt−rB

· yt−rB+1. The internal state, denoted by
s(t) at clock t, consists of the three registers A,B,C, that is, s(t) = (At, Bt, Ct).
Let f be the output function. After an initialization of N rounds, in which the
internal state is updated for N times, the cipher generates a keystream bit by
f(s(t)) for each t ≥ N .

The stream ciphers Trivium (designed by De Cannière and Preneel [8]) and
TriviA-SC (designed by Chakraborti et al. [5,6]) exactly fall into this kind of
ciphers. Kreyvium [4] is a variant of Trivium with 128-bit security, designed by
Canteaut et al. at FSE 2016 for efficient homomorphic-ciphertext compression.
Compared with Trivium, Kreyvium uses two extra registers (K∗, V ∗) without
updating but shifting, i.e., s(t) = (At, Bt, Ct,K

∗, V ∗), and add a single bit of
(K∗, V ∗) to each of �A and �B , where K∗ and V ∗ only involve the key bits and
IV bits respectively. Trivium uses an 80-bit key and an 80-bit initial value (IV),
while Kreyvium and TriviA-SC both use a 128-bit key and a 128-bit IV. All
these ciphers have 1152 rounds.

A Brief Description of Trivium. Trivium contains a 288-bit internal state
with three NFSRs of different lengths. The key stream generation consists of
an iterative process which extracts the values of 15 specific state bits and uses
them both to update 3 bits of the state and to compute 1 bit of key stream. The
algorithm is initialized by loading an 80-bit key and an 80-bit IV into the 288-bit
initial state, and setting all remaining bits to 0, except for three bits. Then, the
state is updated for 4 × 288 = 1152 rounds, in the same way as explained above,
but without generating key stream bits. This is summarized in the pseudo-code
below.



728 M. Liu et al.

(x0, x−1, · · · , x−92) ← (k0, k1, · · · , k79, 0, · · · , 0)
(y0, y−1, · · · , y−83) ← (iv0, iv1, · · · , iv79, 0, · · · , 0)
(z0, z−1, · · · , z−110) ← (0, · · · , 0, 1, 1, 1)
for i from 1 to N do

xi = zi−66 + zi−111 + zi−110 · zi−109 + xi−69

yi = xi−66 + xi−93 + xi−92 · xi−91 + yi−78

zi = yi−69 + yi−84 + yi−83 · yi−82 + zi−87

if N > 1152 then

ksi−1152 = zi−66 + zi−111 + xi−66 + xi−93 + yi−69 + yi−84

end if

end for

4.2 Degree Estimation of TRIVIUM

In this section, we recall the algorithm proposed by Liu [22] for estimating alge-
braic degree of the output of f after N rounds for a Trivium-like cipher, as
described in Algorithm 4.

This algorithm first computes the exact algebraic degrees of the internal
states for the first N0 rounds, where the degrees of the functions g

(t)
A , g

(t)
B and g

(t)
C

are also recorded, then iteratively compute D(t) for t = N0+1, N0+2, · · · , N , and
finally apply the numeric mapping to calculate an estimated degree for the first
bit of the keystream. In Algorithm 4, three sequences, denoted by dA, dB and dC ,
are used to record the estimated degrees of the three registers A,B,C. In each
step of a Trivium-like cipher, three bits are updated. Accordingly, the estimated
degrees for these three bits in each step t are calculated, denoted by d

(t)
A , d

(t)
B

and d
(t)
C . Then update D(t) from D(t−1). For estimating the algebraic degrees of

xt, yt, zt, the two procedures DegMul∗ and DEG deal with their “quadratic” and
“linear” parts separately. The procedure DegMul∗ is used to compute an upper
bound on the algebraic degree of g

(t)
A = zt−rC

· zt−rC+1, g
(t)
B = xt−rA

· xt−rA+1

and g
(t)
C = yt−rB

·yt−rB+1. It has been demonstrated in [22] that for all t with 1 ≤
t ≤ N the estimated degrees d

(t)
A , d

(t)
B , d

(t)
C for xt, yt, zt are greater than or equal

to their corresponding algebraic degrees, and therefore the output DEG(f,D(N))
of Algorithm 4 gives an upper bound on algebraic degree of the N -round output
bit of a Trivium-like cipher.

The algorithm has a linear time and space complexity on N , if we do not
take into account the time and memory used for computing the exact algebraic
degrees of the internal states for the first N0 rounds.
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4.3 The Attack on 805-Round Trivium

Generating a Candidate Set of Favorite Cubes. A favorite cube of size
37 was found in [22] for distinguishing attacks on Trivium. We exhaustively
search the subcubes with size 28 of this cube, and pick up the subcubes such
that the corresponding superpolys after 790 rounds are zero constants (i.e., the
output bits after 790 rounds do not achieve maximum algebraic degree over the
subcube variables), by using Algorithm 4 with N0 = 0. Then we find 5444 such
subcubes.

Algorithm 4. Estimation of Degree of Trivium-Like Ciphers [22]
Require: Given the ANFs of all internal states (At, Bt, Ct) with t ≤ N0, and

the set of variables X.
1: For λ in {A, B, C} do:
2: For t from 1 − nλ to 0 do:
3: d

(t)
λ ← deg(λ0[t], X); // Ai[t] = xt, Bi[t] = yt and Ci[t] = zt

4: D(0) ← (d
(1−nA)
A , · · · , d

(0)
A , d

(1−nB)
B , · · · , d

(0)
B , d

(1−nC)
C , · · · , d

(0)
C );

/* Compute the exact algebraic degrees of the internal states

for the first N0 rounds */

5: For t from 1 to N0 do:
6: For λ in {A, B, C} do:

7: dm
(t)
λ ← deg(g

(t)
λ , X);

8: d
(t)
λ ← deg(λt[t], X);

9: D(t) ← (d
(t−nA+1)
A , · · · , d

(t)
A , d

(t−nB+1)
B , · · · , d

(t)
B , d

(t−nC+1)
C , · · · , d

(t)
C );

/* Iteratively compute the upper bounds on algebraic degrees of

the internal states for the remaining rounds */

10: For t from N0 + 1 to N do:
11: For λ in {A, B, C} do:

12: dm
(t)
λ ← DegMul∗(g(t)

λ );

13: d
(t)
λ ← max{dm

(t)
λ , DEG(�λ, D(t−1))};

14: D(t) ← (d
(t−nA+1)
A , · · · , d

(t)
A , d

(t−nB+1)
B , · · · , d

(t)
B , d

(t−nC+1)
C , · · · , d

(t)
C );

15: return DEG(f, D(N)).

/* Description of the procedure DegMul∗(g(t)
λ ) for λ ∈ {A, B, C} */

procedure DegMul∗(g(t)
λ )

16: t1 ← t − rρ(λ); // ρ(A) = C, ρ(C) = B, ρ(B) = A
17: If t1 ≤ 0 then:

return d
(t1)
ρ(λ) + d

(t1+1)

ρ(λ) .
18: t2 ← t1 − rρ2(λ);

19: d1 ← min{d
(t2)

ρ2(λ)
+ dm

(t1+1)

ρ(λ) , d
(t2+2)

ρ2(λ)
+ dm

(t1)
ρ(λ), d

(t2)

ρ2(λ)
+ d

(t2+1)

ρ2(λ)
+ d

(t2+2)

ρ2(λ)
};

20: d2 ← DEG(�ρ(λ), D
(t1)) + dm

(t1)
ρ(λ);

21: d3 ← DEG(�ρ(λ), D
(t1−1)) + d

(t1+1)

ρ(λ) ;

22: d ← max{d1, d2, d3};
23: return d.

end procedure
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Finding the Basis and Free Non-cube IV Bits. We apply the procedure
Decomposition to each cube c from the 5444 candidates, setting all the non-
cube IV bits to zeros. Note here that we use Algorithm 4 in the procedure
Decomposition to find an upper bound d(Q) on the algebraic degree. Once a
non-trivial basis of fc is found, we set one of the non-cube IV bits to a parameter
variable, and apply Decomposition again. This bit is considered as a free IV bit
if it does not affect the basis, and otherwise we set it to 0. Then we add another
non-cube IV bit to be a parameter variable, and do this again. By this way, we
obtain a set of free non-cube IV bits.

Using this method, we get 47 cubes of size 28 satisfying that a basis of the
superpoly after 805 rounds can be found. To make the attack more efficient,
we further search the cubes whose superpolys after 805 rounds have a basis
containing at most two elements. Once such cubes are found, we modify them
by randomly shifting and changing some indexes, and test them by the same
method. After computations within a dozen hours on a desktop computer, we
are able to find more than 100 cubes whose superpolys after 805 rounds have a
basis with one or two elements.

Computing the Probability. We test 32 out of these cubes, each of which has
a different basis after 805 rounds, according to Step 4 of Algorithm 1. In each
test, we compute the values of the superpoly fc for 1000 random keys and at
most α = 16 non-cube IVs for each key, and evaluate the conditional probability
Pr(g = 0|fc(key, ·) ≡ 0) and Pr(g = 1|fc(key, ·) �≡ 0) for a random fixed key,
where g is a function depending on key bits in the basis of fc and fc(key, ·)
denotes the function fc restricted at a fixed key. Our experiment shows that all
the computations need about 13.5 · 1000 · 32 · 228 ≈ 247 cipher operations. We
remind the readers that, in our experiment, we take all the possible values of
the first log2(α) = 4 free non-cube IV bits and set random values for the other
free non-cube IV bits. Once we observe a non-zero value of the superpoly fc, we
skip the remaining IVs and continue to compute for the next key. On average,
we need to compute 13.5 IVs for each key.

The results are listed in Table 3 in Appendix, together with the cubes, free
non-cube IV bits and the equations. Note that 4 out of the 32 cubes are excluded
from the table due to their little impact in our attack. In Table 3, by p(0|0)
(resp., p(1|1)) we mean the conditional probability of g = 0 (resp., g = 1)
when the superpoly fc is a zero constant (resp., not a zero constant) for a
fixed key, by pfc �=0 we denote the probability that the superpoly fc is not a
zero constant for a fixed key, and #Rds is the number of rounds. We set the

estimate threshold value of the probability to σ = 1+
√

10/Ns

2 , where Ns is the
number of the samples, and set the attack threshold value of the probability,
i.e., the minimum probability used in the attack, to p0 = 0.6 and p1 = 0.7 for
Pr(g = 0|fc = 0) and Pr(g = 1|fc �= 0) respectively. The probability below the
estimate threshold value σ is marked with slash throughs, e.g., 0.514//////, and will
never be used in the attack. The probability with a strikethrough, e.g., 0.568,
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is below the attack threshold value p0 or p1. From the experimental results,
we derive two sets

Ω0 = {(c, g, 0)|Pr(g = 0|fc = 0) > p0}
and

Ω1 = {(c, g, 1)|Pr(g = 1|fc �= 0) > p1}.

All the functions g’s are either linear or quadratic. We also record all the equa-
tions with probability 1,

Λ = {(c, g, b)|Pr(g = b|fc = 0) = 1 or Pr(g = b|fc �= 0) = 1}.

As shown in Table 3, there are 11 cubes with a basis that contains only one
linear or quadratic function. As discussed in Sect. 3.3, if their superpolys are not
zero constants for a fixed key, then the sole function in the basis is always equal
to one. In addition, for the 19th cube in the table, we observe that one of the
functions in its basis is always equal to one given fc �= 0, i.e., the conditional
probability Pr(g4 = 1|fc �= 0) = 1. The remaining 16 cubes have a basis that
contains two linear or quadratic functions. The number of rounds ranges from
805 to 808.

We have also verified for 100 random keys, each with 16 IVs, that the super-
polys of the cubes listed in the table are zero constants when imposing all the
functions in their bases to zeros.

Recovering the Key in Online Phase. In this phase, we set C to the set
of the 28 cubes listed in Table 3, Ω = Ω0 ∪ Ω1, and α = 16. Then execute
Algorithm 3 as described in Sect. 3.2. For avoidance of repetition, here we only
show some necessary details that are not included in Algorithm 3. Remind that,
in Step 3 of the algorithm, we take all the possible values of the first log2(α) = 4
free non-cube IV bits, and set the other free non-cube IV bits to random values.
The non-free non-cube IV bits are set to zeros. In Step 5, we update the equation
sets G0 and G1 according to the values of fc, and use an extra set E to collect
the equations with probability 1 according to Λ. In Step 6, for the case that
{g|g = 0 ∈ G0 and g = 1 ∈ G1} is not empty, we retain the one with higher
probability between g = 0 and g = 1, and remove the other one. Meanwhile, we
remove the equations in E from G0 and G1. In Step 7, we set ri to the maximum
ri such that p−ri

i <
(|Gi|

ri

)
, where |Gi| is the cardinality of Gi, i = 0, 1. Then

randomly choose r0 equations from G0 and r1 equations from G1, solve these
r0 + r1 equations together with E and check whether the solutions are correct.

Note that all the equations are linearly independent and can be linearized
after guessing the values of some key bits. The expected time complexity of the
online phase is less than

28 × 13.5 × 228 + p−r0
0 p−r1

1 280−(r0+r1+|E|) ≈ 237 + 280−( 1
4 r0+

1
2 r1+|E|).

As shown in Table 3, the probability pfc �=0 of non-zero superpoly ranges
from 0.036 to 0.113 for the 12 cubes that can generate deterministic equations.



732 M. Liu et al.

Our experiments show that, for about 45% keys, there is at least one cube c out
of these 12 cubes such that fc �= 0. For such 45% keys, the average number of
such non-zero superpolys is around 2, and the maximum number is 7. In our
experiments for 1000 keys, the average values of r0 and r1 are respectively 3.8
and 2.4, and the average value of 1

4r0 + 1
2r1 + |E| is about 3. In other words, we

can recover 7 equations on key bits by 24 trials on average. The average attack
time is thus around 277, using 237 keystream bits and at the expense of prepro-
cessing time 247. The attack time on 805-round Trivium can be cut down by
using more cubes and at the expense of more preprocessing time and higher data
complexity. Our attack is valid for more than half of 1000 random keys in our
experiments. The attack fails when none of the systems of r0+r1+ |E| equations
derived from G0 and G1 are correct. We stress here that the success probability
of the attack can be increased by using smaller systems of equations (smaller r0
and r1) or larger probability thresholds (larger p0 and p1), at the cost of more
attack time.

Next we give an example of the attack procedure. Note here that in the
example the time complexity is better than the average case.

Example 3. Given that the 80-bit secret key is 71 DB 8B B3 21 CD AE F9 97 84
in hexadecimal, where the most significant bit is k0 and the least significant bit
is k79. For each of the 28 cubes in Table 3, we generate 16 different non-cube IVs
according to its free IV bits, and request 16×228 keystream bits corresponding to
this cube and the non-cube IVs, then compute the values of its superpoly. Taking
the 8-th cube as an instance, we set the four free IV bits 0, 8, 53, 54 to all possible
values, the other free IV bits to random values, and the remaining non-cube IV
bits to zeros; we then request 232 keystream bits of 806 rounds accordingly, and
sum these bits over the cube (module 2); finally we find a non-zero sum and get
a deterministic equation g6 = k63 = 1. We request 28×16×228 ≈ 237 keystream
bits in total, and find that there are 9 cubes having zero superpolys,

1, 2, 4, 10, 11, 16, 19, 24, 25,

and 19 cubes whose superpolys are not zero constants,

3, 5, 6, 7, 8, 9, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 26, 27, 28.

From Table 3, we obtain 6 deterministic equations by the cubes 3, 5, 6, 7, 8, 9.

E = {gi = 1|i ∈ {2, 6, 7, 11, 12, 13}},

where
g2 = k59,
g6 = k63,
g7 = k64,
g11= k66 · k67 + k41 + k68,
g12= k67 · k68 + k42 + k69,
g13= k68 · k69 + k43 + k70.
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Further, we derive two equation sets G0 and G1

G0 = {g5 = k63 = 0}, G1 = {gi = 1|i ∈ {3, 4, 8, 14}},

where

g3 = k60,
g4 = k61,
g8 = k34 · k35 + k9 + k36,
g14= k69 · k70 + k44 + k71.

We can see that all the equations are linear after guessing the values of three
bits k35, k67 and k69. The equation g5 = 0 in G0 holds with probability 0.643,
and the equations gi = 1 in G1 hold with probability 0.888, 0.735, 0.907, 0.799
respectively for i = 3, 4, 8, 14. Accordingly, we have r0 = 0 and r1 = 3. Then
we randomly choose 3 equations from G1, solve a system of 3 + 6 equations
(together with the 6 equations in E), and repeat this step until the correct
solution is found. In theory, the expected number of trials for finding the correct
solution is less than 3. As a matter of fact, all the equations in G1 but g4 = 1
are true for the secret key, which means that we could find the correct key by
at most 4 trials of solving a system of 9 equations. Therefore we can recover the
key with time complexity of 237 + 4 × 271 ≈ 273. The time complexity can be
cut down to 272 if we set r0 + r1 = 4 and exploit the equations in G0 and G1

together.

4.4 The Attack on 835-Round Trivium

Generating a Candidate Set of Favorite Cubes. In [22], an exhaustive
search was done on the cubes of size 37 ≤ n ≤ 40 that contain no adjacent
indexes, by using a simplified version of Algorithm 4. Similarly, we exhaustively
search the cubes of size 36 ≤ n ≤ 40 that contain no adjacent indexes, and pick
up the cubes such that the corresponding superpolys after 815 rounds are zero
constants. Then we find 37595 and 3902 cubes of sizes 36 and 37 respectively
that satisfy the requirement. There are also a number of such cubes of size higher
than 37. This step is done in a few hours on a desktop computer.

Finding the Basis and Free Non-cube IV Bits. As done before, we apply
the procedure Decomposition to each cube c from the candidate set, and also
obtain a set of free non-cube IV bits. We then get 1085 and 99 cubes of sizes
36 and 37 such that a basis of the superpoly after 833 rounds can be found.
The maximum number of rounds after which we can still find a basis is 841. No
basis is found for the superpoly after 833 rounds of the cubes with size higher
than 37 in the candidate set. The results are found in several hours on a desktop
computer.
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Computing the Probability. Computing the value of the superpoly fc over
a big cube is time consuming. We test 13 cubes of size 37 and 28 cubes of
size 36, each of which has a different basis with less than 8 elements after 835
rounds. In each test, we compute the values of the superpoly fc for 128 random
keys with at most α = 8 non-cube IVs, and evaluate the conditional probability
Pr(g = 0|fc(key, ·) ≡ 0) and Pr(g = 1|fc(key, ·) �≡ 0) for a random fixed key. The
values of non-cube IVs are taken in the same manner as done in Sect. 4.3. Our
experiment shows that all the computations need about 6·128·(13·237+28·236) ≈
251 cipher operations. On average, we need to compute 6 IVs for each key.

The results are listed in Tables 4 and 5 in Appendix, together with the cubes,
free non-cube IV bits and the equations. We set the attack threshold value of the
probability to p = 2

3 for both Pr(g = 0|fc = 0) and Pr(g = 1|fc �= 0). The
probability below the estimate threshold value σ is marked with slash throughs,
e.g., 0.514//////, and will never be used in the attack. The probability with a
strikethrough, e.g., 0.654, is below the attack threshold value p. From the experi-
mental results, we derive one set

Ω = {(c, g, b)|Pr(g = b|fc = 0) > p or Pr(g = b|fc �= 0) > p}.

All the functions g’s are either linear or quadratic. We also record all the equa-
tions with probability 1,

Λ = {(c, g, b)|Pr(g = b|fc = 0) = 1 or Pr(g = b|fc �= 0) = 1}.

As shown in Table 4 for the cubes of size 37, there are 2 cubes having a basis
that contains only one function, while there are 5 cubes from which it is possible
to set up an equation with probability 1. The third and 11-th cubes have no
qualified equations, and will be discarded in online phase. The 13-th and 14-th
cubes are the same, while the keystream bits of two different numbers of rounds,
835 and 840, are used.

The results for the cubes of size 36 are listed in Table 5, and there are 7 cubes
that have no qualified equations and will be discarded in online phase.

We have also verified for 32 random keys, each with 4 IVs, that the superpolys
of the cubes listed in the table sum to zeros when imposing all the functions in
their bases to zeros.

Recovering the Key in Online Phase. In this phase, we set α = 8, and then
execute Algorithm 3. Remind that, in Step 3 of the algorithm, we take all the
possible values of the first log2(α) = 3 free non-cube IV bits, and set the other
free non-cube IV bits to random values. The non-free non-cube IV bits are set
to zeros. In Step 5, we update the equation sets G = G0 ∪ G1 according to the
values of fc, and use an extra set E to collect the equations with probability 1
according to Λ. In Step 6, if G has two incompatible equations g = 0 and g = 1,
we remove them both from G. Meanwhile, we remove the equations in E from G.
In Step 7, we set r to the maximum r such that p−r <

(|G|
r

)
. Then randomly
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choose r equations from G, solve these r equations together with E and check
whether the solutions are correct.

Note that all the equations are linearly independent and can be linearized
after guessing the values of some key bits. The expected time complexity of this
phase is less than

6 × (12 × 237 + 21 × 236) + p−r280−(r+|E|) ≈ 244 + 280−( 2
5 r+|E|).

As shown in Table 4, the probability for the 5 cubes that can generate equa-
tions with probability 1 ranges from 0.008 to 0.297. Our experiments show that,
for about half keys, we can generate from one to three equations with probability
1. In our experiments for 128 random keys, the average values of r is larger than
10, and the average value of 2

5r + |E| is about 5. In other words, we can recover
11 equations on key bits by 26 trials on average. The average attack time is thus
around 275, using 8 × (12 × 237 + 21 × 236) ≈ 245 keystream bits and at the
expense of preprocessing time 251. The attack is valid for more than 44% out of
128 random keys in our experiments. The attack time can be cut down by using
more cubes and at the expense of more preprocessing time and more data. On
the other hand, the success probability of the attack can be increased at the cost
of more attack time.

4.5 Discussion

Improvements of the Attack. A natural method to cut down the attack time
is to use more cubes with keystream bits of different numbers of rounds. While
we have found a thousand potentially favorite cubes for Trivium reduced to
from 833 to 841 rounds, we can make use of a small number of them due to a
limited computation resource. Increasing the number α in online phase gives a
higher chance to find deterministic equations. Testing more random keys with
larger α in preprocessing phase gives a more accurate estimate of the conditional
probability Pr(g|fc), as well as generates more valid probabilistic equations. One
may also exploit one of the two equations g = 0 and g = 1 by carefully computing
the probability Pr(g = b|f1, f2) as discussed in Sect. 3.3, when both of them
appear in the equation set G.

For the attack on Trivium reduced to less than 835 rounds, it is possible
to cut down the attack time by using cubes of size less than 36 and combining
the equations retrieved in Sect. 4.4. For instance, using 54 out of the 69 cubes in
Tables 3, 4 and 5 gives an improved key recovery attack on 805-round Trivium.
In this improved attack, we adopt the same strategy that was used for analysis
of 835-round Trivium, and find that we can recover 14 equations by 27 trials
on average. Thus the attack on 805-round Trivium is faster than an exhaustive
search by a factor of around 27, using 245 keystream bits and at the expense of
preprocessing time 251. The attack is directly valid for 31% out of 128 random
keys in our experiments. The attack also works for most of the remaining keys
after increasing the probability threshold p and repeating the attack again.
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Table 2. Success probability of the attack

805 rounds: #key bits 7.2 6.9 6.5 6.1 5.7

Success rate 31% 60% 77% 86% 93%

835 rounds: #key bits 5.0 4.6 4.2 3.8 3.4

Success rate 44% 72% 83% 95% 98%

Success Probability of the Attack. In the above attack, we maximize the
system of probabilistic equations. This is achieved by setting r to the maximum
r such that p−r <

(|G|
r

)
in Algorithm 3. The attack works for more keys when

a smaller system with fewer equations is used, i.e., a smaller r is adopted. We
have verified this by supplementary experiments on round-reduced Trivium.

As shown in Table 2, for 805-round variant of Trivium, we can deduce 7.2,
6.9, 6.5, 6.1 and 5.7 key bits on average for 31%, 60%, 77%, 86% and 93% of
the keys, respectively; and for 835-round variant, we can deduce 5.0, 4.6, 4.2,
3.8 and 3.4 key bits on average for 44%, 72%, 83%, 95% and 98% of the keys,
respectively. Actually, our experiments for 128 random keys show that we can
always set up equations. As shown in Tables 3 and 4, there are many cubes (e.g.,
Cube 5 in Table 3) such that we can set up probabilistic equations from both
sides, which implies that the attack works for a random key.

Applications to TriviA-SC and Kreyvium. We apply our techniques to
TriviA-SC and Kreyvium, and can find some cubes whose superpolys after
1047 and 852 rounds have a low-degree basis with a few elements for TriviA-SC
and Kreyvium respectively. The cubes for TriviA-SC have size larger than 60,
and for Kreyvium the size is at least 54. Computing the conditional probability
Pr(g|fc) for such large cubes is infeasible for us. Though we are unable to fully
verify the validity of the attack on TriviA-SC and Kreyvium, we believe that
there is a high chance of validness due to their similar structures with Trivium.

5 Conclusions

In this paper, we have shown a general framework of a new model of cube attacks,
called correlation cube attack. It is a generalization of conditional cube attack,
as well as a variant of conditional differential attacks. As an illustration, we
applied it to Trivium stream cipher, and gained the best key recovery attacks
for Trivium. To the best of our knowledge, this is the first time that a weak-
key distinguisher on Trivium stream cipher can be converted to a key recovery
attack. We believe that this new cryptanalytic tool is useful in both cryptanalysis
and design of symmetric cryptosystems. In the future, it is worthy of working
on its applications to more cryptographic primitives, such as the Grain family
of stream ciphers, block cipher Simon and hash function Keccak.

Acknowledgments. We are grateful to the anonymous reviewers for their valuable
comments.
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A The Cubes, Equations and Probabilities

Table 3. The cubes, equations and probabilities in the attack on 805-round Trivium
(16 IVs and 1000 keys for cube size 28)

No. Cube Indexes Free IV bits Eqs. p(0|0) p(1|1) pfc �=0 #Rds

1
2, 4, 6, 8, 10, 12, 14, 17, 19, 21,
23, 25, 27, 29, 32, 34, 36, 38, 40,
42, 44, 47, 49, 51, 53, 57, 62, 79

0, 1, 9, 54, 55, 58, 59,
60, 64, 65, 66, 67, 68,

69, 72, 73, 74, 77
g14 335.0 ////// 1 0.078 805

2
2, 4, 6, 8, 10, 12, 14, 17, 19, 21,
23, 25, 27, 29, 32, 34, 36, 38, 40,
42, 44, 47, 49, 51, 53, 62, 73, 79

0, 9, 54, 55, 56, 64, 65,
66, 67, 68, 69, 70, 71,

75, 77
g3 435.0 ////// 1 0.036 805

3
2, 4, 6, 8, 10, 12, 14, 17, 19, 21,
23, 25, 27, 29, 32, 34, 36, 38, 40,
42, 44, 47, 49, 51, 53, 62, 77, 79

0, 1, 9, 54, 55, 56, 57,
58, 59, 60, 63, 64, 65,
66, 67, 68, 69, 70, 71,

72, 73, 74

g7 805.0 ////// 1 0.071 805

4
1, 3, 5, 7, 9, 11, 13, 16, 18, 20,
22, 24, 26, 28, 31, 33, 35, 37, 39,
41, 43, 46, 48, 50, 52, 61, 74, 78

53, 54, 55, 56, 57, 63,
64, 65, 66, 67, 68, 69,

70, 71, 76
g4 055.0 ////// 1 0.061 805

5
1, 3, 5, 7, 9, 11, 13, 16, 18, 20,
22, 24, 26, 28, 31, 33, 35, 37, 39,
41, 43, 46, 48, 50, 52, 56, 61, 78

0, 8, 53, 54, 57, 58, 59,
63, 64, 65, 66, 67, 68,

71, 72, 73, 76
g13 435.0 ////// 1 0.093 806

6
1, 3, 5, 7, 9, 11, 13, 16, 18, 20,
22, 24, 26, 28, 31, 33, 35, 37, 39,
41, 43, 46, 48, 50, 52, 54, 61, 78

0, 8, 55, 56, 57, 58, 59,
62, 63, 64, 65, 66, 69,

70, 71, 72, 73, 76
g11 415.0 ////// 1 0.056 806

7
1, 3, 5, 7, 9, 11, 13, 16, 18, 20,
22, 24, 26, 28, 31, 33, 35, 37, 39,
41, 43, 46, 48, 50, 52, 61, 72, 78

8, 53, 54, 55, 63, 64,
65, 66, 67, 68, 69, 70,

74, 76
g2 905.0 ////// 1 0.041 806

8
1, 3, 5, 7, 9, 11, 13, 16, 18, 20,
22, 24, 26, 28, 31, 33, 35, 37, 39,
41, 43, 46, 48, 50, 52, 61, 76, 78

0, 8, 53, 54, 55, 56, 57,
58, 59, 62, 63, 64, 65,
66, 67, 68, 69, 70, 71,

72, 73

g6 745.0 ////// 1 0.080 806

9
0, 2, 4, 6, 8, 10, 12, 15, 17, 19,
21, 23, 25, 27, 30, 32, 34, 36, 38,
40, 42, 45, 47, 49, 51, 55, 60, 79

7, 52, 53, 56, 57, 58,
61, 62, 64, 65, 66, 67,

70, 71, 72, 75, 76
g12 0.568 1 0.113 807

10
0, 2, 4, 6, 8, 10, 12, 15, 17, 19,
21, 23, 25, 27, 30, 32, 34, 36, 38,
40, 42, 45, 47, 49, 51, 53, 60, 79

7, 54, 55, 56, 57, 58,
61, 62, 64, 65, 68, 69,

70, 71, 72, 75, 76
g10 025.0 ////// 1 0.061 807

11
0, 2, 4, 6, 8, 10, 12, 15, 17, 19,
21, 23, 25, 27, 30, 32, 34, 36, 38,
40, 42, 45, 47, 49, 51, 60, 75, 79

7, 52, 53, 54, 55, 56,
57, 58, 61, 62, 64, 65,
66, 67, 68, 69, 70, 71,

72, 76

g5 0.556 1 0.097 807

12
2, 6, 8, 10, 12, 14, 17, 19, 21, 23,
25, 27, 29, 32, 34, 36, 38, 40, 42,
44, 47, 49, 51, 53, 57, 62, 77, 79

0, 1, 3, 4, 9, 54, 55,
58, 59, 60, 64, 65, 66,
67, 68, 69, 72, 73, 74

g7
g14

0.594
0.587

0.832
0.748 0.286 805

13
2, 4, 8, 10, 12, 14, 17, 19, 21, 23,
25, 27, 29, 32, 34, 36, 38, 40, 42,
44, 47, 49, 51, 53, 55, 57, 62, 79

0, 1, 5, 6, 9, 58, 59,
60, 64, 65, 66, 67, 70,

72, 73, 74, 77

g12
g14

0.575
0.621

0.654
0.799 0.309 805

14
2, 6, 8, 10, 12, 14, 17, 19, 21, 23,
25, 27, 29, 32, 34, 36, 38, 40, 42,
44, 47, 49, 51, 53, 55, 62, 77, 79

0, 1, 3, 4, 9, 56, 57, 58,
59, 60, 63, 64, 65, 66,
67, 70, 71, 72, 73, 74

g7
g12

0.573
0.587

0.803
0.721 0.269 805

15
1, 5, 7, 9, 11, 13, 16, 18, 20, 22,
24, 26, 28, 31, 33, 35, 37, 39, 41,
43, 46, 48, 50, 52, 61, 72, 74, 78

2, 3, 53, 54, 55, 56, 57,
63, 64, 65, 66, 67, 68,

69, 70, 76

g2
g4

335.0 ///////
0.573

0.708
0.735 0.185 805

16
2, 4, 6, 8, 10, 12, 15, 17, 19, 21,
23, 25, 27, 30, 32, 34, 36, 38, 40,
42, 45, 47, 49, 51, 60, 62, 75, 79

0, 1, 9, 52, 53, 54, 55,
56, 57, 58, 64, 65, 66,
67, 68, 69, 70, 71, 72,

77

g5
g16

0.558
225.0 ///////

0.902
326.0 /////// 0.122 805

17
1, 5, 7, 9, 11, 13, 16, 18, 20, 22,
24, 26, 28, 31, 33, 35, 37, 39, 41,
43, 46, 48, 50, 52, 56, 61, 76, 78

0, 2, 3, 8, 53, 54, 57,
58, 59, 63, 64, 65, 66,

67, 68, 71, 72, 73

g6
g13

0.622
0.580

0.778
0.744 0.297 806

18
1, 3, 7, 9, 11, 13, 16, 18, 20, 22,
24, 26, 28, 31, 33, 35, 37, 39, 41,
43, 46, 48, 50, 52, 54, 56, 61, 78

0, 4, 5, 8, 57, 58, 59,
63, 64, 65, 66, 69, 71,

72, 73, 76

g11
g13

0.580
0.635

0.697
0.805 0.343 806
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Table 3. (continued)

No. Cube Indexes Free IV bits Eqs. p(0|0) p(1|1) pfc �=0 #Rds

19
1, 3, 5, 7, 9, 11, 14, 16, 18, 20,

22, 24, 26, 29, 31, 33, 35, 37, 39,
41, 44, 46, 48, 50, 61, 70, 74, 78

0, 8, 51, 52, 53, 59, 62,
63, 64, 65, 66, 67, 68,

72, 76

g1
g4

105.0 ///////
0.568

115.0 ///////
1 0.092 806

20
1, 5, 7, 9, 11, 13, 16, 18, 20, 22,
24, 26, 28, 31, 33, 35, 37, 39, 41,
43, 46, 48, 50, 52, 54, 61, 76, 78

0, 2, 3, 8, 55, 56, 57,
58, 59, 62, 63, 64, 65,
66, 69, 70, 71, 72, 73

g6
g11

0.607
745.0 ///////

0.792
0.692 0.260 806

21
0, 3, 5, 7, 9, 11, 13, 16, 18, 20,

22, 24, 26, 28, 31, 33, 35, 37, 39,
41, 43, 46, 48, 50, 52, 54, 61, 78

1, 8, 14, 55, 56, 57, 58,
59, 62, 63, 64, 65, 66,
69, 70, 71, 72, 73, 76

g8
g11

0.694
245.0 ///////

0.907
0.629 0.334 806

22
2, 4, 6, 8, 10, 12, 15, 17, 19, 21,
23, 25, 27, 30, 32, 34, 36, 38, 40,
42, 45, 47, 49, 51, 55, 60, 75, 79

0, 7, 52, 53, 56, 57, 58,
61, 62, 64, 65, 66, 67,

70, 71, 72, 73, 76

g5
g12

0.660
0.705

0.691
0.742 0.450 807

23
2, 4, 6, 8, 10, 12, 15, 17, 19, 21,
23, 25, 27, 30, 32, 34, 36, 38, 40,
42, 45, 47, 49, 51, 53, 55, 60, 79

0, 7, 56, 57, 58, 61, 62,
64, 65, 68, 70, 71, 72,

73, 74, 75, 76

g10
g12

0.636
0.762

0.665
0.762 0.492 807

24
2, 4, 6, 8, 10, 12, 15, 17, 19, 21,
23, 25, 27, 30, 32, 34, 36, 38, 40,
42, 45, 47, 49, 51, 53, 60, 75, 79

0, 7, 54, 55, 56, 57, 58,
61, 62, 64, 65, 66, 67,
68, 69, 70, 71, 72, 76

g5
g10

0.643
855.0 ///////

0.815
0.669 0.308 807

25
0, 2, 4, 6, 8, 10, 12, 15, 17, 19,

21, 23, 25, 27, 30, 32, 34, 36, 38,
40, 42, 45, 47, 49, 51, 60, 64, 79

7, 52, 53, 54, 55, 56,
57, 58, 61, 62, 65, 66,
67, 68, 69, 70, 71, 72,

75, 76

g17
g18

355.0 ///////
694.0 ///////

0.801
585.0 /////// 0.246 807

26
0, 2, 4, 6, 8, 10, 13, 15, 17, 19,

21, 23, 25, 28, 30, 32, 34, 36, 38,
40, 43, 45, 47, 49, 58, 60, 73, 79

7, 50, 51, 52, 53, 54,
55, 56, 61, 62, 64, 65,
66, 67, 68, 69, 70, 75,

76

g3
g15

0.592
994.0 ///////

0.888
0.650 0.160 807

27
1, 3, 5, 7, 9, 11, 14, 16, 18, 20,

22, 24, 26, 29, 31, 33, 35, 37, 39,
41, 44, 46, 48, 50, 54, 59, 74, 78

6, 51, 52, 55, 56, 57,
60, 61, 63, 64, 65, 66,

69, 70, 71, 72, 75

g4
g11

0.652
0.696

0.641
0.760 0.463 808

28
1, 3, 5, 7, 9, 11, 14, 16, 18, 20,

22, 24, 26, 29, 31, 33, 35, 37, 39,
41, 44, 46, 48, 50, 52, 54, 59, 78

6, 55, 56, 57, 60, 61,
63, 64, 67, 69, 70, 71,

72, 73, 74, 75

g9
g11

0.644
0.766

0.636
0.787 0.508 808

g1 =k57
g2 =k59
g3 =k60
g4 =k61
g5 =k62
g6 =k63
g7 =k64
g8 =k34 · k35 + k9 + k36
g9 =k64 · k65 + k39 + k66
g10=k65 · k66 + k40 + k67
g11=k66 · k67 + k41 + k68
g12=k67 · k68 + k42 + k69
g13=k68 · k69 + k43 + k70
g14=k69 · k70 + k44 + k71
g15=k70 · k71 + k45 + k72
g16=k72 · k73 + k47 + k74
g17=k76 · k77 + k51 + k78
g18=k67 · k68 + k76 · k77 + k0 + k42 + k51 + k68 + k78
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Table 4. The cubes, equations and probabilities in the attack on 835-round Trivium
(8 IVs and 128 keys for cube size 37)

No. Cube Indexes Free IV bits Eqs. p(0|0) p(1|1) pfc �=0 #Rds

1

2, 4, 6, 8, 10, 12, 14, 17, 19, 21,
23, 25, 27, 29, 32, 34, 36, 38, 40,
42, 44, 47, 49, 51, 53, 55, 57, 59,
62, 64, 66, 68, 70, 72, 74, 77, 79

0, 1, 3, 5, 7, 9 g16 274.0 ////// 1 0.008 836

2

1, 3, 5, 7, 9, 11, 13, 16, 18, 20,
22, 24, 26, 28, 31, 33, 35, 37, 39,
41, 43, 46, 48, 50, 52, 54, 56, 58,
61, 63, 65, 67, 69, 71, 73, 76, 78

0, 2, 4, 6, 8, 79 g15 425.0 ////// 1 0.016 837

3

0, 2, 4, 7, 9, 11, 13, 15, 17, 19,
22, 24, 26, 28, 30, 32, 34, 37, 39,
41, 43, 45, 47, 49, 52, 54, 56, 58,
60, 62, 64, 67, 69, 71, 73, 75, 79

1, 3, 5, 6, 8, 10, 77 g5
g47

455.0 ///////
0.653

417.0 ///////
758.0 /////// 0.055 835

4

0, 2, 4, 6, 8, 11, 13, 15, 17, 19,
21, 23, 26, 28, 30, 32, 34, 36, 38,
41, 43, 45, 47, 49, 51, 53, 56, 58,
60, 62, 64, 66, 68, 71, 73, 75, 79

1, 3, 5, 7, 9, 10, 77 g24
g26

005.0 ///////
954.0 ///////

766.0 ///////
1 0.047 835

5

1, 3, 5, 7, 10, 12, 14, 16, 18, 20,
22, 25, 27, 29, 31, 33, 35, 37, 40,
42, 44, 46, 48, 50, 52, 55, 57, 59,
61, 63, 65, 67, 70, 72, 74, 76, 78

0, 2, 4, 6, 8, 9, 11
g17
g25
g27

0.696
874.0 ///////
345.0 ///////

0.972
444.0 ///////
496.0 ///////

0.281 835

6

0, 2, 4, 6, 9, 11, 13, 15, 17, 19,
21, 24, 26, 28, 30, 32, 34, 36, 39,
41, 43, 45, 47, 49, 51, 54, 56, 58,
60, 62, 64, 66, 69, 71, 73, 75, 79

1, 3, 5, 7, 8, 10, 77
g16
g24
g26

0.667
874.0 ///////
983.0 ///////

1
474.0 ///////
744.0 ///////

0.297 836

7

0, 2, 5, 7, 9, 11, 13, 15, 17, 20,
22, 24, 26, 28, 30, 32, 34, 37, 39,
41, 43, 45, 47, 49, 52, 54, 56, 58,
60, 62, 64, 67, 69, 71, 73, 75, 79

1, 3, 4, 6, 8, 10, 33,
76, 77

g31
g33
g46
g47
g49

0.962
0.962

516.0 ///////
808.0 ///////
643.0 ///////

726.0 ///////
726.0 ///////
925.0 ///////
224.0 ///////
084.0 ///////

0.797 835

8

0, 2, 4, 7, 9, 11, 13, 15, 17, 19,
21, 24, 26, 28, 30, 32, 34, 36, 39,
41, 43, 45, 47, 49, 51, 54, 56, 58,
60, 62, 64, 66, 69, 71, 73, 75, 79

1, 3, 5, 6, 8, 10, 20, 77

g20
g21
g33
g35
g36

0.968
0.968

914.0 ///////
254.0 ///////
914.0 ///////

916.0 ///////
0.691

584.0 ///////
584.0 ///////
515.0 ///////

0.758 835

9

0, 2, 4, 6, 9, 11, 13, 15, 17, 19,
22, 24, 26, 28, 30, 32, 34, 37, 39,
41, 43, 45, 47, 49, 52, 54, 56, 58,
60, 62, 64, 67, 69, 71, 73, 75, 79

3, 5, 7, 8, 10, 20, 76,
77

g31
g33
g35
g36
g46
g47

016.0 ///////
446.0 ///////
726.0 ///////
854.0 ///////
294.0 ///////

0.729

495.0 ///////
836.0 ///////
906.0 ///////
225.0 ///////
394.0 ///////
464.0 ///////

0.539 835

10

0, 2, 5, 7, 9, 11, 13, 15, 17, 19,
22, 24, 26, 28, 30, 32, 34, 37, 39,
41, 43, 45, 47, 49, 52, 54, 56, 58,
60, 62, 64, 67, 69, 71, 73, 75, 79

3, 4, 6, 8, 10, 18, 76,
77

g20
g31
g33
g35
g36
g46
g47

0.716
795.0 ///////
285.0 ///////
216.0 ///////
225.0 ///////
735.0 ///////

0.776

986.0 ///////
706.0 ///////
706.0 ///////
326.0 ///////
095.0 ///////
145.0 ///////
145.0 ///////

0.477 835

11

0, 2, 4, 7, 9, 11, 13, 15, 17, 20,
22, 24, 26, 28, 30, 32, 34, 37, 39,
41, 43, 45, 47, 49, 52, 54, 56, 58,
60, 62, 64, 67, 69, 71, 73, 75, 79

5, 6, 8, 10, 18, 33, 76,
77

g19
g20
g31
g33
g46
g47
g49

865.0 ///////
307.0 ///////
307.0 ///////
307.0 ///////
684.0 ///////
037.0 ///////
684.0 ///////

484.0 ///////
945.0 ///////
285.0 ///////
395.0 ///////
594.0 ///////
814.0 ///////
615.0 ///////

0.711 835

12

2, 4, 6, 8, 10, 12, 15, 17, 19, 21,
23, 25, 27, 30, 32, 34, 36, 38, 40,
42, 45, 47, 49, 51, 53, 55, 57, 60,
62, 64, 66, 68, 70, 72, 75, 77, 79

0, 1, 3, 5, 7, 13

g8
g10
g12
g14
g16
g18
g45

965.0 ///////
835.0 ///////
585.0 ///////
006.0 ///////
805.0 ///////

0.708
516.0 ///////

175.0 ///////
306.0 ///////
156.0 ///////
916.0 ///////
175.0 ///////

0.778
425.0 ///////

0.492 839



740 M. Liu et al.

Table 4. (continued)

No. Cube Indexes Free IV bits Eqs. p(0|0) p(1|1) pfc �=0 #Rds

13 1, 3, 5, 7, 9, 11, 14, 16, 18, 20,
22, 24, 26, 29, 31, 33, 35, 37, 39,
41, 44, 46, 48, 50, 52, 54, 56, 59,
61, 63, 65, 67, 69, 71, 74, 76, 78

0, 2, 4, 6, 8, 12 g15
g17

905.0 ///////
085.0 ///////

834.0 ///////
1 0.125 835

14 0, 2, 4, 6, 12

g7
g9
g13
g15
g17
g44
g50

165.0 ///////
236.0 ///////
416.0 ///////

0.754
0.754

165.0 ///////
946.0 ///////

606.0 ///////
394.0 ///////
535.0 ///////
676.0 ///////

0.690
705.0 ///////
125.0 ///////

0.555 840

g1 =k54
g2 =k55
g3 =k56
g4 =k57
g5 =k58
g6 =k59
g7 =k61
g8 =k62
g9 =k63
g10=k64
g11=k65
g12=k78 · k79 + k53
g13=k30 · k31 + k5 + k32
g14=k31 · k32 + k6 + k33
g15=k32 · k33 + k7 + k34
g16=k33 · k34 + k8 + k35
g17=k34 · k35 + k9 + k36
g18=k35 · k36 + k10 + k37
g19=k38 · k39 + k13 + k40
g20=k40 · k41 + k15 + k42
g21=k42 · k43 + k17 + k44
g22=k44 · k45 + k19 + k46
g23=k45 · k46 + k20 + k47
g24=k46 · k47 + k21 + k48
g25=k47 · k48 + k22 + k49

g26=k48 · k49 + k23 + k50
g27=k49 · k50 + k24 + k51
g28=k50 · k51 + k25 + k52
g29=k51 · k52 + k26 + k53
g30=k52 · k53 + k27 + k54
g31=k53 · k54 + k28 + k55
g32=k54 · k55 + k29 + k56
g33=k55 · k56 + k30 + k57
g34=k56 · k57 + k31 + k58
g35=k57 · k58 + k32 + k59
g36=k59 · k60 + k34 + k61
g37=k61 · k62 + k36 + k63
g38=k62 · k63 + k37 + k64
g39=k63 · k64 + k38 + k65
g40=k64 · k65 + k39 + k66
g41=k65 · k66 + k40 + k67
g42=k66 · k67 + k41 + k68
g43=k67 · k68 + k42 + k69
g44=k68 · k69 + k43 + k70
g45=k69 · k70 + k44 + k71
g46=k72 · k73 + k47 + k74
g47=k74 · k75 + k49 + k76
g48=k75 · k76 + k50 + k77
g49=k76 · k77 + k51 + k78
g50=k77 · k78 + k52 + k79

Table 5. The cubes, equations and probabilities in the attack on 835-round Trivium
(8 IVs and 128 keys for cube size 36)

No. Cube Indexes Free IV bits Eqs. p(0|0) p(1|1) pfc �=0 #Rds

1

1, 3, 5, 7, 9, 11, 13, 16, 18, 20,
22, 24, 26, 28, 31, 33, 35, 37, 39,
41, 43, 46, 48, 50, 52, 54, 56, 58,

61, 63, 65, 67, 69, 71, 76, 78

0, 2, 4, 6, 73 g3
g5

035.0 ///////
036.0 ///////

635.0 ///////
687.0 /////// 0.219 835

2

1, 3, 5, 7, 9, 11, 13, 16, 18, 20,
22, 24, 26, 28, 31, 33, 35, 37, 41,
43, 46, 48, 50, 52, 54, 56, 58, 61,

63, 65, 67, 69, 71, 73, 76, 78

0, 2, 4, 6, 8, 38, 39

g1
g3
g5
g50

134.0 ///////
356.0 ///////
936.0 ///////
655.0 ///////

573.0 ///////
166.0 ///////
985.0 ///////
644.0 ///////

0.438 836

3

1, 3, 5, 7, 9, 11, 13, 16, 18, 20,
22, 24, 26, 28, 31, 33, 35, 37, 39,
41, 43, 46, 48, 50, 52, 54, 56, 58,

61, 63, 65, 67, 69, 73, 76, 78

0, 2, 4, 6, 8, 71

g1
g3
g40
g50

325.0 ///////
0.698

535.0 ///////
395.0 ///////

005.0 ///////
0.857

916.0 ///////
425.0 ///////

0.328 836

4

1, 3, 5, 7, 9, 11, 13, 16, 18, 20,
22, 24, 26, 28, 31, 33, 35, 37, 39,
41, 43, 46, 48, 50, 52, 54, 56, 58,

61, 63, 65, 69, 71, 73, 76, 78

0, 2, 4, 6, 8, 67

g3
g5
g40
g50

075.0 ///////
616.0 ///////
325.0 ///////
506.0 ///////

595.0 ///////
916.0 ///////
595.0 ///////
845.0 ///////

0.328 836

5

0, 2, 4, 6, 8, 10, 12, 15, 17, 19,
21, 23, 25, 27, 30, 32, 34, 36, 40,
42, 45, 47, 49, 51, 53, 55, 57, 60,

62, 64, 66, 68, 70, 72, 75, 79

1, 3, 5, 7, 37, 38, 77

g2
g4
g12
g49

455.0 ///////
585.0 ///////
134.0 ///////
294.0 ///////

0.762
386.0 ///////
294.0 ///////
425.0 ///////

0.492 837
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Table 5. (continued)

No. Cube Indexes Free IV bits Eqs. p(0|0) p(1|1) pfc �=0 #Rds

6

0, 2, 4, 6, 8, 10, 12, 15, 17, 19,
21, 23, 25, 27, 30, 32, 34, 36, 38,
40, 42, 45, 47, 49, 51, 53, 55, 57,

60, 62, 66, 68, 70, 72, 75, 79

1, 3, 5, 7, 64, 77

g2
g4
g12
g39

005.0 ///////
455.0 ///////
374.0 ///////
684.0 ///////

0.741
586.0 ///////
735.0 ///////
846.0 ///////

0.422 837

7

0, 2, 4, 6, 8, 10, 12, 15, 17, 19,
21, 23, 25, 27, 30, 32, 34, 36, 38,
40, 42, 45, 47, 49, 51, 53, 55, 57,

60, 62, 64, 68, 70, 72, 75, 79

1, 3, 5, 7, 66, 77

g2
g4
g39
g49

705.0 ///////
375.0 ///////
394.0 ///////
084.0 ///////

0.755
717.0 ///////
066.0 ///////
905.0 ///////

0.414 837

8

0, 2, 4, 6, 8, 10, 12, 15, 17, 19,
21, 23, 25, 27, 30, 32, 34, 36, 38,
40, 42, 45, 47, 49, 51, 53, 55, 57,

60, 62, 64, 66, 68, 72, 75, 79

1, 3, 5, 7, 70, 77

g2
g12
g39
g49

316.0 ///////
084.0 ///////
084.0 ///////
335.0 ///////

0.906
745.0 ///////
246.0 ///////
585.0 ///////

0.414 837

9

0, 2, 4, 6, 8, 10, 12, 15, 17, 19,
21, 23, 25, 27, 30, 32, 34, 36, 38,
40, 42, 45, 47, 49, 51, 53, 55, 57,

60, 62, 64, 66, 70, 72, 75, 79

1, 3, 5, 7, 68, 77

g4
g12
g39
g49

206.0 ///////
774.0 ///////
984.0 ///////
664.0 ///////

0.875
055.0 ///////
007.0 ///////
574.0 ///////

0.312 837

10

1, 3, 5, 7, 9, 11, 13, 16, 18, 20,
22, 24, 26, 28, 31, 33, 35, 37, 39,
41, 43, 46, 48, 50, 52, 56, 58, 61,

63, 65, 67, 69, 71, 73, 76, 78

0, 2, 4, 6, 8, 54

g1
g3
g5
g40
g44

324.0 ///////
146.0 ///////
146.0 ///////
835.0 ///////
465.0 ///////

043.0 ///////
086.0 ///////
026.0 ///////
006.0 ///////
045.0 ///////

0.391 836

11

0, 4, 6, 8, 10, 12, 15, 17, 19, 21,
23, 25, 27, 30, 32, 34, 36, 38, 40,
42, 45, 47, 49, 51, 53, 55, 57, 60,

62, 64, 66, 68, 70, 72, 75, 79

1, 2, 3, 5, 7, 77

g2
g4
g12
g39
g49

394.0 ///////
565.0 ///////
604.0 ///////
705.0 ///////
635.0 ///////

0.712
876.0 ///////
854.0 ///////
166.0 ///////
675.0 ///////

0.461 837

12

0, 2, 4, 6, 8, 10, 15, 17, 19, 21,
23, 25, 28, 30, 32, 34, 36, 38, 40,
43, 45, 47, 49, 51, 53, 55, 58, 60,

62, 64, 66, 68, 70, 73, 75, 79

1, 3, 5, 11, 12, 13, 77

g2
g12
g37
g47
g49

925.0 ///////
885.0 ///////
144.0 ///////
885.0 ///////
445.0 ///////

0.750
766.0 ///////
385.0 ///////
333.0 ///////
385.0 ///////

0.469 839

13

2, 6, 8, 10, 12, 14, 17, 19, 21, 23,
25, 27, 29, 32, 34, 36, 38, 40, 42,
44, 47, 49, 51, 53, 55, 57, 59, 62,

64, 66, 68, 70, 72, 74, 77, 79

0, 1, 3, 4, 5, 7, 9

g2
g4
g6
g41
g43
g45

354.0 ///////
265.0 ///////
265.0 ///////
875.0 ///////
656.0 ///////
146.0 ///////

656.0 ///////
656.0 ///////

0.703
0.703

265.0 ///////
745.0 ///////

0.500 835

14

1, 4, 6, 8, 10, 12, 14, 16, 19, 21,
23, 25, 27, 29, 31, 34, 36, 38, 40,
42, 44, 49, 51, 53, 55, 57, 59, 62,

64, 66, 68, 70, 72, 74, 77, 79

0, 2, 3, 5, 7, 9, 45, 46,
47

g2
g4
g6
g12
g34
g41

364.0 ///////
386.0 ///////

0.780
884.0 ///////
237.0 ///////
165.0 ///////

236.0 ///////
556.0 ///////

0.736
045.0 ///////

0.678
126.0 ///////

0.680 835

15

0, 2, 4, 7, 9, 11, 13, 15, 17, 19,
22, 24, 26, 28, 30, 32, 34, 37, 39,
41, 43, 45, 47, 49, 52, 54, 56, 58,

60, 62, 67, 69, 71, 73, 75, 79

5, 6, 8, 10, 63, 64, 76

g11
g33
g35
g36
g46
g47

0.821
296.0 ///////
296.0 ///////
014.0 ///////
465.0 ///////

0.795

0.753
695.0 ///////
485.0 ///////
605.0 ///////
825.0 ///////
944.0 ///////

0.695 835

16

0, 2, 4, 6, 8, 10, 13, 15, 17, 19,
21, 23, 25, 28, 30, 32, 36, 38, 40,
43, 45, 47, 49, 51, 53, 55, 58, 60,

62, 64, 66, 68, 70, 73, 75, 79

1, 3, 5, 7, 9, 11, 33,
34, 77

g2
g4
g12
g26
g28
g30

095.0 ///////
095.0 ///////
817.0 ///////
516.0 ///////
784.0 ///////
784.0 ///////

0.685
706.0 ///////
046.0 ///////
046.0 ///////
485.0 ///////
605.0 ///////

0.695 835

17

0, 2, 4, 6, 8, 10, 13, 15, 17, 19,
21, 23, 25, 28, 30, 32, 34, 36, 38,
43, 45, 47, 49, 51, 53, 55, 58, 60,

62, 64, 66, 68, 70, 73, 75, 79

1, 3, 5, 7, 9, 11, 39,
40, 41, 77

g2
g4
g12
g24
g26
g28

335.0 ///////
335.0 ///////
335.0 ///////
007.0 ///////
337.0 ///////
766.0 ///////

346.0 ///////
175.0 ///////
155.0 ///////
175.0 ///////
356.0 ///////
336.0 ///////

0.766 835
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Table 5. (continued)

No. Cube Indexes Free IV bits Eqs. p(0|0) p(1|1) pfc �=0 #Rds

18

0, 2, 4, 6, 8, 10, 13, 15, 17, 19,
21, 23, 25, 28, 30, 32, 34, 36, 40,
43, 45, 47, 49, 51, 53, 55, 58, 60,

62, 64, 66, 68, 70, 73, 75, 79

1, 3, 5, 7, 9, 11, 37,
38, 77

g2
g4
g12
g24
g26
g30

924.0 ///////
595.0 ///////
346.0 ///////
916.0 ///////
417.0 ///////
346.0 ///////

616.0 ///////
616.0 ///////
616.0 ///////
075.0 ///////

0.698
185.0 ///////

0.672 835

19

0, 2, 4, 6, 8, 10, 13, 15, 17, 19,
21, 23, 25, 28, 30, 32, 34, 36, 38,
40, 43, 45, 47, 49, 51, 53, 55, 58,

60, 62, 64, 68, 70, 73, 75, 79

1, 3, 5, 7, 9, 11, 66, 77

g2
g4
g24
g26
g28
g30

155.0 ///////
964.0 ///////
295.0 ///////
295.0 ///////
135.0 ///////
356.0 ///////

0.696
755.0 ///////
075.0 ///////
856.0 ///////
026.0 ///////
806.0 ///////

0.617 835

20

0, 2, 4, 6, 8, 10, 13, 15, 17, 19,
21, 23, 25, 28, 30, 32, 34, 36, 38,
40, 43, 45, 47, 49, 51, 53, 55, 58,

60, 62, 64, 66, 68, 73, 75, 79

1, 3, 5, 7, 9, 11, 70, 77

g2
g12
g24
g26
g28
g30

465.0 ///////
835.0 ///////
516.0 ///////
296.0 ///////
465.0 ///////
146.0 ///////

0.674
265.0 ///////
265.0 ///////

0.674
816.0 ///////
375.0 ///////

0.695 835

21

0, 3, 5, 7, 9, 11, 13, 15, 18, 20,
22, 24, 26, 28, 30, 33, 35, 37, 39,
41, 43, 48, 50, 52, 54, 56, 58, 61,

63, 65, 67, 69, 71, 73, 76, 78

1, 2, 4, 6, 8, 44, 45,
46, 79

g1
g3
g5
g33
g40
g50

684.0 ///////
926.0 ///////
417.0 ///////

0.829
415.0 ///////
756.0 ///////

374.0 ///////
725.0 ///////
725.0 ///////
436.0 ///////
725.0 ///////
484.0 ///////

0.727 836

22

2, 4, 6, 8, 10, 12, 14, 17, 19, 21,
23, 25, 27, 29, 32, 34, 36, 38, 40,
42, 47, 49, 51, 53, 55, 57, 60, 62,

64, 66, 68, 70, 72, 75, 77, 79

0, 1, 3, 5, 7, 43, 44, 45

g2
g4
g12
g32
g39
g49

026.0 ///////
026.0 ///////
083.0 ///////
027.0 ///////
044.0 ///////
005.0 ///////

0.744
456.0 ///////
474.0 ///////
146.0 ///////
775.0 ///////
625.0 ///////

0.609 837

23

1, 3, 5, 7, 9, 11, 13, 16, 18, 20,
22, 24, 26, 28, 31, 33, 35, 37, 39,
41, 46, 48, 50, 52, 54, 56, 59, 61,

63, 65, 67, 69, 71, 74, 76, 78

0, 2, 4, 6, 42, 43, 44

g1
g3
g31
g38
g48
g50

376.0 ///////
907.0 ///////

0.818
285.0 ///////
634.0 ///////
636.0 ///////

306.0 ///////
036.0 ///////

0.740
394.0 ///////
483.0 ///////
705.0 ///////

0.570 838

24

0, 2, 4, 6, 8, 10, 12, 15, 17, 19,
21, 23, 25, 27, 30, 32, 34, 36, 38,
40, 45, 47, 49, 51, 53, 55, 58, 60,

62, 64, 66, 68, 70, 73, 75, 79

1, 3, 5, 41, 42, 43, 76

g2
g12
g30
g37
g47
g49

095.0 ///////
516.0 ///////
447.0 ///////
784.0 ///////
296.0 ///////
315.0 ///////

0.685
695.0 ///////
816.0 ///////
695.0 ///////
404.0 ///////
825.0 ///////

0.695 839

25

0, 4, 6, 8, 10, 13, 15, 17, 19, 21,
23, 25, 28, 30, 32, 34, 36, 38, 40,
43, 45, 47, 49, 51, 53, 55, 58, 60,

62, 64, 66, 68, 70, 73, 75, 79

1, 2, 3, 5, 7, 9, 11, 77

g2
g4
g12
g24
g26
g28
g30

225.0 ///////
225.0 ///////
345.0 ///////
906.0 ///////
565.0 ///////
345.0 ///////
256.0 ///////

176.0 ///////
585.0 ///////
375.0 ///////
375.0 ///////
436.0 ///////
226.0 ///////
895.0 ///////

0.641 835

26

1, 5, 7, 9, 11, 14, 16, 18, 20, 22,
24, 26, 29, 31, 33, 35, 37, 39, 41,
44, 46, 48, 50, 52, 54, 56, 59, 61,

63, 65, 67, 69, 71, 74, 76, 78

0, 3, 4, 6, 8, 12

g23
g25
g27
g29
g31
g42
g44

775.0 ///////
436.0 ///////
535.0 ///////
125.0 ///////
394.0 ///////
535.0 ///////
125.0 ///////

695.0 ///////
766.0 ///////
695.0 ///////
194.0 ///////
194.0 ///////
654.0 ///////
474.0 ///////

0.445 835

27

0, 2, 4, 7, 9, 11, 13, 15, 17, 19,
22, 24, 26, 28, 30, 32, 34, 37, 39,
41, 43, 45, 47, 49, 52, 54, 56, 58,

60, 62, 64, 67, 69, 71, 73, 79

3, 5, 6, 8, 75, 77

g20
g21
g31
g33
g35
g36
g44

295.0 ///////
155.0 ///////
295.0 ///////

0.837
0.755

804.0 ///////
295.0 ///////

915.0 ///////
285.0 ///////
755.0 ///////

0.722
856.0 ///////
494.0 ///////
915.0 ///////

0.617 835

28

0, 2, 4, 6, 8, 11, 13, 15, 17, 19,
21, 23, 26, 28, 30, 32, 34, 36, 38,
41, 43, 45, 47, 49, 51, 53, 56, 58,

60, 62, 64, 66, 68, 71, 73, 79

1, 3, 5, 7, 9, 75, 77

g2
g12
g22
g24
g26
g28
g49

185.0 ///////
845.0 ///////
017.0 ///////

0.839
316.0 ///////
185.0 ///////
185.0 ///////

066.0 ///////
755.0 ///////
765.0 ///////
916.0 ///////
916.0 ///////
806.0 ///////
645.0 ///////

0.758 837
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