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Toward Scalable Fully Homomorphic Encryption
Through Light Trusted Computing Assistance
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Abstract—It has been a long standing problem to securely outsource computation tasks to an untrusted party with integrity and
confidentiality guarantees. While fully homomorphic encryption (FHE) is a promising technique that allows computations performed on
the encrypted data, it suffers from a significant slow down to the computation. In this paper we propose a hybrid solution that uses the
latest hardware Trusted Execution Environments (TEEs) to assist FHE by moving the bootstrapping step, which is one of the major
obstacles in designing practical FHE schemes, to a secured SGX enclave. TEEFHE, the hybrid system we designed, makes it possible
for homomorphic computations to be performed on smaller ciphertext and secret key, providing better performance and lower memory
consumption. We make an effort to mitigate side channel leakages within SGX by making the memory access patterns totally
independent from the secret information. The evaluation shows that TEEFHE effectively improves the software only FHE schemes in
terms of both time and space.
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1 INTRODUCTION

LOng haunting the security research community and
the cloud industry is how to securely outsource data

intensive computing tasks to public cloud platforms, such
as Amazon AWS, Google Cloud, etc. The demand for such
secure computing solutions continues to grow in recent
years, with the availability of a huge amount of data that
need computing resources to process. A prominent example
is genomic data, which are projected to increase at the pace
of 2 to 40 exabytes per year [1]. Analyzing such data requires
an enormous amount of computing power, even more ex-
pected for protecting them from the untrusted computing
environments, since the data often contains sensitive infor-
mation, such as a patient’s susceptibility to a certain disease,
which should not be exposed to the public cloud without
proper agreements in place. For over a decade, this demand
has been expected to be addressed by cryptographic innova-
tions, particularly fully homomorphic encryption (FHE) that
allows any computation to be executed on encrypted data
and returns only encrypted results back to the data owner.
However, although impressive progress has been made, the
state-of-the-art FHE techniques are long distance away from
practical use, incurring a slowdown on the order of 106 [2].

Secure computing supports: limitations. More specifically,
a fully homomorphic encryption scheme supports an un-
limited number of addition and multiplication operations,
and therefore can theoretically compute any function. In
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practice, however, most existing schemes use learning-
with-error (LWE) or its extension, ring learning-with-error
(RLWE), for homomorphic computing, which introduces
noise to the ciphertext for each operation; as a result, after
a limited number of operations, the ciphertext needs to be
“refreshed” to reduce the noise to allow the computation
to continue. Otherwise, the encrypted result can no longer
be decrypted correctly. Serving this noise removal is a
bootstrapping step that performs homomorphic evaluation of
ciphertext, which is exceedingly expensive, over 6 orders of
magnitude slower than the addition operations and 4 orders
of magnitude slower than the multiplication operations (Ta-
ble 4). Leveled homomorphic encryption (a.k.a. somewhat
homomorphic encryption) relaxes the requirement of boot-
strapping step in fully homomorphic encryption, however,
it can only support a fixed number of accumulated multi-
plication operations (i.e., the circuit depth). As a result, the
encrypted data under leveled homomorphic encryption can
only be used for specific tasks with a pre-defined maximum
circuit depth and need to be re-encrypted again for sup-
porting other computing tasks. Also, the leveled HE tends
to have larger ciphertexts and secret keys, which causes
a higher memory consumption and slows down the basic
homomorphic addition or multiplication operations when
the circuit depth grows.

More recently, a hardware secure computing solution
has gained traction. Such an approach utilizes a trusted
execution environment (TEE) with isolated memory and
computing space, called enclave, to process encrypted user
data, ensuring that a compromised operating system (OS),
virtual machine hypervisor and even the system adminis-
trator cannot directly observe the content of the data within
the enclave. A prominent example is Intel’s Software Guard
Extensions (SGX) [3], a feature of Intel’s Skylake or higher
generation CPUs that enables decryption and then analysis
of sensitive user data inside the enclave, to achieve a privacy



assurance at scale. With its promise, such TEE-based tech-
niques are known to be vulnerable to side channel attacks,
in which the OS-level adversary could induce page faults,
monitor accessed bits and cache, perform memory access
timing checks and others to infer the content of protected
user data [4], [5]. These threats are known to be application
dependent and hard (expensive) to eliminate. Also in terms
of performance, it is known that SGX is constrained by
a relatively small (≤ 128MB) protected memory and it
becomes much slower once the memory use goes beyond
the limit [6]. Further SGX is not presently available on
any CPUs that support multi-socket systems. Even though
most cloud providers, including Azure, AWS, Google cloud,
Alibaba cloud, IBM etc., all have SGX-capable hosts, the
deployment of such systems is still limited: particularly, so
far only low-end processors are armed with SGX, with their
CPU packages including no more than 6 physical cores, not
to mention any GPU, or accelerator supports.

TEE-assisted FHE. With its limited computing capability
and less reliable privacy protection, nevertheless we believe
the SGX-like TEE offers a new opportunity to enhance
the performance of FHE, without undermining its privacy
assurance. In our research, we investigated a hybrid secure
computing model, in which a small number of SGX enclaves
are delegated with lightweight cryptographic tasks that are
easy to secure and fully within its memory constraint to as-
sist the generic computation on encrypted data outside the
enclaves. Our approach, called TEEFHE, utilizes the SGX-
based TEE to refresh the ciphertext, removing the noise by
decrypting the homomorphically encrypted data followed
by a re-encryption step. For the sake of simplicity, let us
define such a procedure as SGX bootstrapping in the rest of
this paper. Unlike the original bootstrapping in HE, which
reduces the noise level in ciphertext, SGX bootstrapping is
able to completely eliminate the noise in the ciphertext. In
this way, not only can we reduce the massively intensive
bootstrapping step for homomorphic noise reduction, but
we can significantly curtail the encryption level to make
ciphertext orders of magnitude smaller and computation on
it much faster, and ensure the generality of the computation
on the encrypted data. The last point is important since
all relatively more efficient leveled homomorphic encryp-
tion approaches today can only support a limited number
of accumulated multiplications based on given applica-
tion needs. As a result, the ciphertexts they use become
application-specific, and could not be reused for a different
analysis with deeper circuits.

In our research, we implemented TEEFHE over
SEAL [7], the HE library developed by the Microsoft Re-
search. Our system has been designed to achieve a high
performance of HE computation with the assistance of
enclave and also to ensure a high privacy assurance: we
reconstructed the encryption and decryption algorithms in
the enclave for SGX bootstrapping to make them completely
secret-independent and therefore remove the side channel
leaks for the step; we also changed the library to avoid more
heavyweight SEAL context initialization for each enclave
call. Further, to allow concurrently running FHE processes
to share a small number of SGX enclaves, TEEFHE includes
a scheduler that utilizes the length of a task queue and

expected follow-up workload to decide when to bootstrap
the computation for each process. We analyzed the secu-
rity guarantee of TEEFHE and experimentally evaluated
its performance, first over a set of benchmark operations
(addition, multiplication and bootstrapping) and then over a
real-world logistic regression task. The study shows that our
approach improves the performance of the bootstrapping
step by 4 to 6 orders of magnitude, and multiplication/ad-
dition by 2 orders of magnitude. When tested on the HE
based logistic regression task for disease prediction in the
2017 iDASH Genome Privacy Competition [8], TEEFHE out-
performed the SEAL-based, software only implementation
by 2 orders, using only 1% of its memory consumption.

The contributions of the paper are outlined as follows:
• New understanding and new techniques. We made the

attempt to combine hardware TEE and cryptographic
algorithms for complex and generic secure computation
tasks. Our preliminary results demonstrate this hybrid
approach can significantly enhance FHE performance (at
least 2 orders of magnitude on the logistic regression
task) without undermining its security guarantee. We be-
lieve that it will lead to more efforts along this promising
direction.

• Implementation and evaluation. We designed a hybrid sys-
tem – TEEFHE, and evaluated its security and perfor-
mance using both the benchmark operations and a real-
world secure machine learning task. The results show
that the system is both secure and effective.

Roadmap. The rest of the paper is organized as follows: Sec-
tion 2 introduces the background for our research; Section 3
elaborates the design and implementation of TEEFHE, and
our analysis of its security guarantee; Section 4 describes
the evaluation of the performance of TEEFHE; Section 5 dis-
cusses the limitations of our current approaches and future
research to address them; Section 6 reviews the related prior
research and Section 7 concludes the paper.

2 BACKGROUND

(Fully) Homomorphic Encryption. Homomorphic encryp-
tion was first introduced by Rivest, Adleman and Dertouzos
in the late 1970’s [9]. It is a form of encryption that allows
computations to be carried out directly on ciphertext, and
the computation result can be retrieved by decrypting the
ciphertext, which is the same as if the computations are
performed on plaintext. Homomorphic encryption enables
the computation to be computed homomorphically on the
ciphertext without exposing the secret data to an untrusted
party. Hence, it can be applied in a wide range of scenarios,
such as secure outsourcing of data and computation (to
public/commercial clouds) and secure voting systems, etc.

It was not until Gentry’s seminal work published in 2009
that the first fully homomorphic encryption (FHE) system
became possible, allowing for the homomorphic execution
of an arbitrary number of both addition and multiplication
operations [10]. An FHE scheme is built upon a somewhat
homomorphic encryption (SHE) scheme that can evaluate
arithmetic circuits of a limited depth. For all existing ho-
momorphic encryption schemes, a small noise component
is added to the ciphertext during encryption to guarantee

2



the security of the scheme. Computing homomorphically on
ciphertexts may accumulate the noise above a certain maxi-
mum tolerance, after which the decryption may not give the
correct computation results. In order to evaluate arbitrarily
complex circuits, a bootstrapping approach is adopted in
an FHE scheme to remove the noise after a number of
SHE steps, in which the encrypted private key of the SHE
scheme is placed inside the public key so that the accurate
ciphertext can be obtained by homomorphically evaluating
the decryption circuit on the noise-prone ciphertext and the
encrypted secret key. Notably, the bootstrapping step in FHE
is computationally expensive compared with other leveled
homomorphic encryption operations, and has been one of
the major obstacles to designing practical FHE schemes in
real-world applications.

Implementing Homomorphic Encryption. Gentry’s orig-
inal FHE scheme was first implemented by Gentry and
Halevi [11]. Although several optimizations have been
adopted, the implementation is considered impractical as
the size of the ciphertext and the computation time in-
crease drastically with the increase of the security level.
With the development of the second generation FHE
schemes based on the Learning With Errors (LWE) prob-
lem and its generalization to rings (RLWE), multiple FHE
software packages became available, such as HElib [12],
HEAAN [13], SEAL [7], TFHE [14], Palisade [15] and
cuHE [16], etc., which implement various FHE schemes
including Brakerski-Gentry-Vaikuntanathan (BGV) [17] and
Fan-Vercauteren (FV) [18] among others.

In particular, the Simple Encrypted Arithmetic Library
(SEAL) is an open source implementation of a variant of
the FV scheme, i.e., the Brakerski/Fan-Vercauteren scheme
(BFV), and is developed by the Cryptography Research
Group at Microsoft Research. It supports the common
arithmetic operations over ciphertext, including addition,
multiplication and negative, as well as operations be-
tween a ciphertext and a plaintext, such as AddPlain
and MultiplyPlain. Notably, SEAL possesses a relatively
small, standalone code base.

Intel’s Software Guard Extension (SGX). Intel’s Soft-
ware Guard Extension (SGX) is a recent implementation of
the hardware-based Trusted Execution Environment (TEE),
which has become widely available in commodity desktop
and workstation processors with Skylake/Kabylake micro-
architecture. Mainstream cloud service providers including
Google, AWS, Azure and Alibaba cloud are planning to
provide SGX-enabled instances.

SGX is an x86 instruction extension providing isolated
execution environment. The protected area inside the ap-
plication address space is called an enclave. SGX is de-
signed under a strong adversary model, resilient against
adversaries with the system privileges or even full control
over the physical machine, with only the processor itself
as the trusted computing base. To provide integrity and
confidentiality protection of data running in an enclave,
the processor operates SGX codes and data in an encrypted
memory region called the processor reserved memory (PRM).
Extra permission checks are performed by extending the
memory controller when the enclave data is accessed. The
code and data are only decrypted after they are loaded into

the processor caches. The PRM is limited by size (< 128 MB
in the current available hardware), while the computation
in PRM induces a small performance overhead (about 10%).

The SGX capabilities are encoded as leaf functions of
ENCLU/ENCLS instructions. For the ease of development,
Intel provides a set of SGX drivers and SDKs for both Win-
dows and Linux operating systems. The switches between
the application and the enclave are through ECalls (Enclave
Interface Functions) or OCalls (Calls outside the Enclave).
However, SGX does not support system calls inside the
enclave, and as a result, system calls can only be served
after the execution mode is switched from the enclave mode
to the normal mode.

On the other hand, it was demonstrated that SGX is
vulnerable to various side channel attacks [4], [5], [19], [20],
[21]. The vast majority of shared resources, such as the the
page table, translation look-aside buffer (TLB), branch target
buffer and caches can be exploited as side channel leakage
sources for the access patterns of enclave executions.

Provisioning Secrets with Remote Attestation. Besides the
above isolated execution protections, SGX enables a user
to verify the hardware configuration of a remote platform,
ensuring a software entity is running on an Intel SGX-
enabled platform protected within an enclave, before to
provision the software with secrets and protected data. In
the design of SGX, it is achieved by supporting two forms
of attestation.

The local attestation allows a source enclave to prove its
identity and authenticity to a target enclave running on the
same platform. When an enclave is loaded and initialized,
the enclave’s measurement is generated by the trusted pro-
cessor. During local attestation, a cryptographic report is
generated for the source enclave by computing CMAC on
the enclave’s identity (including the enclave’s measurement)
using a report key, which can be generated and verified on
the same platform.

With the remote attestation, an enclave can attest to a
trusted remote entity, and establish an authenticated com-
munication channel between them. Remote attestation is
done with the help of an Intel signed enclave, called the
Quote Enclave (QE). QE receives a local attestation report
from an enclave, verifies it through a local attestation. It
obtains the Provisioning Seal Key to retrieve the Attestation
Key and generates an Attestation Signature with the key.
Along with the local attestation report, they are passed to an
Intel Attestation Service (IAS) to verify the signature. During
remote attestation, a shared key can be established with a
key agreement protocol between the attested enclave and
the entity acquiring the attestation. After the authenticated
communication channel is established, the remote entity can
provision the enclave with secrets and protected data.

Adversary Model. In this paper, we follow the adversary
models for both homomorphic encryption and SGX. We
consider a semi-honest (honest but curious) adversary, who
has system privileges and full control of the operating
system, and is willing to perform side channel attacks on
the TEE but does not collude with the Intel. Following we
summarize what such an adversary can and cannot do:

• Full control over the system, with system privileges and
physical access to the platform;
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Fig. 1. Overview of the proposed TEEFHE framework. Participating
parties play three different roles, as the users, the homomorphic com-
putation (HC) nodes, or the TEE-based bootstrapping nodes.

• Leverage of different side channels, e.g., cache & page
table and branch prediction based side channels to infer
the memory access patterns, and instructions with vari-
ant latencies, such as the floating point unit (FPU) based
side channels;

• No collusion with Intel.
Under the above assumptions, the security goal of the

system is that the adversary cannot reduce the effort (w.r.t
both time and memory) needed to recover the secret from
the equivalent fully homomorphic encryption schemes with
software-based bootstrapping implementations.

3 TEEFHE: DESIGN AND IMPLEMENTATION

In this section, we introduce the design of TEEFHE. Begin-
ning with an overview of the system, we first describe each
component, and then explain the implementation based on
SGX and SEAL. Our prototype implementation is based
upon SEAL version 2.3. We choose SEAL due to its simple
code base and independence from external libraries, which
makes it easier, compared with other HE implementations,
to port to the secure enclave. We will explore implementing
TEEFHE on other FHE schemes in future work.

3.1 Overview
The structure of TEEFHE is illustrated in Fig. 1. Essentially,
the system involves multiple parties playing three key roles
in the secure computation, the users who outsource the
computation to a remote party (cloud), with their secret data
protected from unauthorized interrogation; the homomorphic
computation (HC) nodes provided by the cloud services us-
ing unprotected CPU, GPU or FPGA-based instances; the
bootstrapping nodes provided by the cloud services using the
TEE, such as Intel’s SGX. The data flow among participating
parties with the TEEFHE system is as follows:
1© The users first verify the configuration of the cloud

through remote attestation, and establish the shared se-
cret key with the bootstrapping nodes. Afterwards, the
users provision their encryption parameters as well as
the secret and public keys to the bootstrapping nodes
through the established secret channel.

2© The user’s data encrypted under the homomorphic se-
cret key is sent to the HC nodes to perform homomorphic
computations. If the computation requires private data

from multiple users, each user sends the data encrypted
using their own key to the HC nodes.

3© When bootstrapping is needed in the homomorphic
computation, the current intermediate ciphertext is sent
from the HC nodes to the bootstrapping nodes.

4© The bootstrapping nodes, running inside a secure en-
clave, first decrypt the ciphertext, then re-encrypt it using
the secret key and send the refreshed ciphertext back
to the HC nodes. This TEE-based bootstrapping step
removes the noise in the ciphertext, and thus enables
further homomorphic computation by the HC nodes.

5© After the whole homomorphic computation is com-
pleted, the ciphertext is sent from the HC node back to
the users. The users decrypt the ciphertext to retrieve the
computation result.

In this paper, we skip the details of homomorphic com-
putation on the HC nodes. Generally, HC nodes perform
the homomorphic operations of the specific somewhat ho-
momorphic encryption (SHE) schemes. We also skip the
discussion of the remote attestation, which is a standard
procedure within the SGX development framework.

3.2 TEE-based Bootstrapping

A TEE-based bootstrapping primitive accepts a ciphertext
as input, decrypts it and re-encrypts the plaintext again
to get a refreshed ciphertext. Hence, we implemented the
decryption and encryption algorithms within a trusted en-
clave, which were built to mitigate side channel leakages in
the TEE, when the adversary has full control of the plat-
form. On the other hand, to serve multiple bootstrapping
requests from the HC nodes (referred to as the “client” in
the follow-up sections), a scheduling algorithm is developed
for the TEE-based bootstrapping nodes (referred to as the
“server”) to utilize the computing and networking resources
efficiently. Below, we present the design of the TEE-based
bootstrapping nodes in our prototype implementation of
TEEFHE.

Porting SEAL to SGX. The prototype implementation of
TEEFHE provides three interfaces for the application: a
configure_para method to pass the encryption param-
eters and to set the SealContext object with the given
parameters in SGX; a set_key method to receive the public
key and secret key after a remote attestation is performed;
and a decrease_noise method to perform bootstrapping
inside SGX, which accepts the ciphertext as the input and
returns the refreshed ciphertext.

In our research, we implemented the SEAL functions
that are not supported by SGX within the enclave. For
instance, as class objects are not allowed as arguments in
ECalls or OCalls, we built functions to support saving
(or loading) the class objects of Ciphertext, Plaintext,
PublicKey or Secretkey to (or from) character buffers.
We also modified the random number generator in SEAL so
that the hardware sources sgx_rdrand are always used.

On the client side, we deployed the Simulator class
object of SEAL to estimate the current noise budget after
each homomorphic operation. We used the function in SEAL
to restore the noise estimation to an initial state after the
client’s bootstrapping request is served.
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Performance enhancement. In SEALv2.3, a SEALContext
object is constructed after all parameters are set. The object
class checks the validity and properties of the parameters,
and performs several important pre-computations. In its
current implementation, a SEALContext object cannot be
set as global because no default constructor is implemented
before all parameters are set. As a result, each bootstrap-
ping through the SGX ECall needs to construct a separate
SEALContext object, which is more time-consuming (0.1
second over the ring R = Z[x]/(x4096 + 1)) than the SGX
bootstrapping step (0.011 second over the same ring).

In our implementation, we implemented a default con-
structor for the SEALContext class that allows for global
context with uninitialized values, and a set_para(. . .)
method that allows the SEALContext object to be con-
structed without an initialization and to be set after the
parameters are provided.

3.3 Scheduling Algorithm
In the current TEEFHE system, the TEE is used solely for the
bootstrapping step, which is achieved through the collabo-
ration between the bootstrapping nodes (the server) and the
HC nodes (the client). Notably, one server may accept the
bootstrapping requests from multiple clients, whereas one
client may send requests to multiple servers, in which all
communications are implemented using socket connections.
To concurrently serve multiple client requests and make
full use of the SGX computing resources, we designed a
scheduling algorithm running on the server to manage the
execution of these requests, as illustrated in Figure 2.

The server maintains a task queue that stores the boot-
strapping tasks, and a data map which stores the ciphertext
to be processed. The entries from the task queue and data
map are matched through their client ID. A thread pool
is created in advance to keep track of the bootstrapping
threads inside an SGX enclave. The size of the thread pool
is a pre-set parameter that is bounded by the available CPU
cores in the enclave.

After each homomorphic operation, each client sends the
current noise estimation to the server. Depending on the
message returned from the server, the client may continue
the homomorphic computation, or prepare for sending the
ciphertext to the server for bootstrapping.

To maintain the communication with the clients, the
server will run two system threads, including a service
thread responsible of answering the requests from clients,
and a scheduler thread responsible of scheduling bootstrap-
ping tasks. The service thread decides whether bootstrap-
ping is needed according to a pre-determined service policy.
If it is needed, the service thread inserts a bootstrapping task
into the task queue, receives the ciphertext from the client
and puts the ciphertext to the data map. In our prototype
implementation, we adopted a simple service policy that
is solely dependent on the noise budget and the status
of the task queue. If the noise budget is above a given
threshold of noise level, and the number of the awaiting
tasks in the task queue is smaller than 2 times the size of
the thread pool, or the noise budget is estimated to exceed
the maximum tolerance for decryption, the bootstrapping
request is inserted to the task queue and will be served when
the computing resource is available.

In the meantime, a scheduler thread on the server fetches
a task at a time from the task queue according to the
scheduling policy, and launches the bootstrapping thread. In
our prototype implementation, we adopted a simple First-
Come-First-Served (FCFS) policy for serving the bootstrap-
ping requests. After the ciphertext is refreshed, it is put into
the data map with a finished flag set. The service thread
periodically queries the status of the data map, and sends
the refreshed ciphertext back to the client, until a task’s
finished flag is set.

3.4 Side Channel Elimination

Side channel leakages in SGX have been extensively studied.
It has been demonstrated that the enclave execution can be
inferred by observing the usage of page tables, branch pre-
diction unit (including branch target buffer and return stack
buffer), cache, TLB and DRAM row buffer. In this paper, we
categorize the side channel leakages in SGX as follows. To
the best of our knowledge, all known side channel attacks
(Section 6) against SGX fall into these categories.

• Leakages by secret dependent branches. The type of
side channel leakages associated with leakages from
conditional branches, unconditional branches, indirect
branches, indirect function calls or function returns.
For example, the observation of conditional branches re-
veals the result of a condition evaluation for if or loop
statement. A viable method to achieve such observation
is the branch shadowing attack [21]. As such, the adversary
can learn information from the secret if there are secret
dependent branches.

• Leakages by secret dependent memory accesses. The
type of side channels are related to memory references
whose addresses are dependent on the secret infor-
mation. As such, the adversary capable of collecting
memory traces (e.g. by measuring the effect of cache
contentions) is able to gain insight into the secrets.

• Leakages by instructions with variable execution la-
tency. On modern processors, for the sake of perfor-
mance optimization, a few instructions are implemented
in such a manner that their execution latency depends
on the operand values. An example is floating-point
instructions in x86 platform, because subnormal num-
bers are rarely encountered, the support for subnormal
floating-point numbers is implemented in microcode by
the hardware vendors. The execution latency can thus
be an order-of-magnitude greater if the operands are
subnormal numbers. As such, the adversary with the
ability of measuring the instruction latencies may deduce
the ranges of the operands.

Finding side channel leaks. To determine side channel
leakages, here we first determine the public and secret
information, in the sense of whether it is already known
to the adversary without looking at a side channel.

• Public information: public encryption parameters includ-
ing the coefficient modulus, the polynomial modulus and
the plain modulus;

• Secret information: the secret key, the plaintext decrypted
from the ciphertext, and any information related such as
the length of the plaintext polynomial.
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TABLE 1
A summary of modified code segments to remove secret dependent access patterns.

File Function Changes
util/uintarithsmallmod.cpp;

util/uintarithmod.cpp exponentiate uint mod rewrite if statement with cmov instructions

encryptor.cpp; rnsencryptor.cpp Encryptor::preencrypt;
RNSEncryptor::rns preencrypt rewrite if statement with cmov instructions

decryptor.cpp; rnsdecryptor.cpp Decryptor::decrypt;
RNSDecryptor::rns decrypt rewrite if statement with cmov instructions

smallntt.h inverse ntt negacyclic harvey rewrite if statement with cmov instructions
encryptor.cpp Encryptor::preencrypt resize the destination to size coeff_count

The first type of side channel leakages that we try to
identify are all branches and memory accesses that have
dependency on the secret key or the plaintext. First we
used customized Pintools [22] to analyze the basic-block
level execution traces and memory traces. Pin is a dynamic
binary instrumentation framework that enables the creation
of dynamic program analysis tools. As done in previous
research [23], we used Pin on the simulation enclave, which
has the same memory layout as the hardware enclave.

To find side channel leaks, we performed a differential
analysis, in which we use Pintool to monitor the changes in
basic-block level execution traces and memory traces in the
presence of identical and then different secrets (secret keys
and plaintext). Particularly, to avoid the noise introduced
by randomness during the encryption and decryption oper-
ations, we temporarily fixed the outputs of pseudorandom
number generator (RNG), as well as the primitive root, so
the same precomputed number theoretical transform (NTT)
tables will be built when the input secrets are the same. Then
we analyze the execution traces to identify the program
locations where the same traces are observed given the
same input secrets, and different ones are found when the
inputs change. Such locations are considered to be secret-
dependent. The same technique has also been applied to
find secret-dependent memory addresses. After that, we
manually locate the functions including these instructions
and memory operations using objdump, and identify their
corresponding source codes, which are secret dependent
branches and memory accesses.

All the secret dependent code segments we found are
listed in Table 1. One demonstrating example is that SEAL
adopts the square-and-multiply algorithm to compute the

modular exponentiation of big integer numbers (in file
util/uintarithsmallmod.cpp, see Fig. 3 for details).
The algorithm is known to leak information about the
exponent through the observation whether the conditional
branch is taken (line 10 to 13), which can be exploited, for
example, by a branch shadowing attack [21].

The second type of side channels we identified are
the instructions with variable latencies. According to the
Intel 64 and IA-32 Architectures Optimization Reference
Manual [24, Appendix C.3, LATENCY AND THROUGH-
PUT], the instructions with variable latencies depending
on the operand values are listed in Table 2. We located
the references of these instructions in the decryption and
encryption procedure by manually inspecting their assem-
bly code with the help of objdump and confirmed that
all of them are independent from the secret key and the
plaintext: they either use constants or random numbers as
inputs or read from easily verifiable public sources. As an
example, the instruction SQRTSD is used in the function
Encryptor::set_poly_coeffs_normal to generate a
noise value sampled from a clipped normal distribution and
does not rely on secret information.

Removing side channel leaks. We removed the side channel
leakages related to the if condition (shown in Table 1) by
rewriting the code with conditional move instructions. For
example for the code segment shown in Figure 3, the value
of product is conditionally moved to intermediate de-
pending on whether the condition exponent&1 is true.
The code for the conditional_mov function is shown in
Fig. 4. The function takes the source address and destination
address as inputs. Depending on whether the condition is
satisfied, the consecutive memory data of the given size will
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TABLE 2
Instructions with variant latencies of Skylake micro-architecture.

Instruction Appeared in function Secret
dependent?

SQRTPD; SQRTSD;
SQRTPS; SQRTSS Encryptor::set poly coeffs normal no

DIV; IDIV; DIVPD;
DIVSD; DIVPS;

DIVSS

Encryptor::Encryptor;
SealContext::validate no

VPMASKMOVD/Q not found -
RDRAND sgx rdrand no
CLFLUSH;

CLFLUSHOPT not found -

1 uint64_t exponentiate_uint_mod(uint64_t operand, uint64_t
exponent, const SmallModulus &modulus) {

2 - ... // fast cases
3

4 uint64_t power = operand;
5 uint64_t product = 0;
6 uint64_t intermediate = 1;
7 // Initially: power = operand and intermediate = 1,

product is irrelevant.
8

9 while (true) {
10 - if (exponent & 1) {
11 - product = multiply_uint_uint_mod(power,

intermediate, modulus);
12 - swap(product, intermediate);
13 - }
14 + product = multiply_uint_uint_mod(power,

intermediate, modulus);
15 + conditional_mov(&product, &intermediate, 1,

exponent & 1);
16

17 exponent >>= 1;
18 if (exponent == 0) {
19 break;
20 }
21 product = multiply_uint_uint_mod(power, power,

modulus);
22 swap(product, power);
23 }
24 return intermediate;
25 }

Fig. 3. The square-and-multiply implementation to compute the modular
exponentiation of big integer numbers in SEALv2.3. The if statement
(lines beginning with−) leaks information of the exponent through side
channels, and is replaced with code using conditional move instructions
(lines beginning with +).

be moved from the source address to the destination address
(or not). The conditional_mov function is implemented
with CMOVcc instructions, which are independent from
branch prediction and do not introduce measurable micro-
architectural effects that depend on the condition [25].

The last one of the side channel leakages shown in
Table 1 is that the numbers of coefficients in the plaintext
polynomial are leaked during the execution of function
Encryptor::preencrypt. The leakage is caused by a
for loop, in which the terminating condition depends
on the numbers of coefficients in the plaintext polyno-
mial. To remove the leakage, the size of the plaintext
is extended to n + 1 (which is public information) with
resize function after it is decrypted (by modifying the
Decryptor::decrypt function in the file decrypt.cpp).
We further removed the secret dependent if branches in the
resize function.

Security analysis. With the help of Pin, we confirmed by ex-
periment that the basic block level traces and memory traces

1 // size: number of qwords (8 bytes)
2 void __attribute__ ((noinline)) conditional_mov(void *

source, void *dest, uint64_t size, uint64_t cond) {
3 __asm__ __volatile__ (
4 "movq %1, %%rax\n"
5 "movq %2, %%rbx\n"
6 "movq $0, %%rdx\n"
7 "loop:\n"
8 "cmpq %3, %%rdx\n"
9 "jge exit\n"

10 "movq (%%rbx), %%rcx\n"
11 "cmp $1, %0\n"
12 "cmove (%%rax), %%rcx\n"
13 "movq %%rcx, (%%rbx)\n"
14 "addq $8, %%rax\n"
15 "addq $8, %%rbx\n"
16 "inc %%rdx\n"
17 "jmp loop\n"
18 "exit:\n"
19 :: "r" (cond), "r" (source), "r" (dest), "r" (

size)
20 : "rax", "rbx", "rcx", "rdx", "memory");
21 }

Fig. 4. The implementation of the conditional_mov function. We
confirmed that the size of data to be moved does not leak private
information.

during SGX bootstrapping are independent from the secret
information. As far as we can tell, the secret leakages of the
instructions with variant latencies have also been removed.
As such we conclude that: the adversary’s knowledge of the
secret information is not extended by observing side channel
leakages in the SGX bootstrapping.

As the HC nodes perform conventional somewhat ho-
momorphic operations, the observations are already avail-
able to the adversary. We further examine the network
traffics between the bootstrapping nodes and HC nodes,
including:

• The size of the transferred data. It is equal to the size
of a ciphertext, and can be computed from the public
information.

• Estimation of the noise budget. It is public information
obtained from the homomorphic operations that have
been performed.

• The scheduling status and function calls of ECalls and
OCalls. They do not reveal information about the HE
scheme or the secret key and plaintext.

Furthermore, with the assumption that the adversary does
not collude with Intel, the adversary cannot directly access
or interfere with the code and data within the enclaves; oth-
erwise, it would violate SGX’s confidentiality and integrity
guarantees.

In conclusion, the adversary is not able to gain additional
secret information from TEEFHE, and TEEFHE provides
data protection of the same security level as the software-
based implementation of the underlying FHE scheme.

4 PERFORMANCE EVALUATION

Our testbed is equipped with an Intel Xeon E3-1280 v5
processor at 3.7 GHz with 64 GB memory and Hyper-
Threading enabled, running a Ubuntu 16.04.2 system with
kernel version 4.4.0. The code is compiled with g++-5.4.0.
We use the SGX SDK version 2.2. The code of the prototype
TEEFHE system consists of 1570 lines of C/C++ codes, in
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TABLE 3
Notations used for the parameters.

Parameter Description Name in SEAL
n A power of 2 -

xn + 1
Polynomial modulus which

defines a ring R = R/(xn + 1)
poly_modulus

q
Modulus in the ciphertext

space of the form
q1 × q2 × · · · × qk

coef_modulus

t Modulus in the plaintext space plain_modulus
χ Error distribution

δ Standard deviation of χ
noise_

standard_
deviation

B Bound on the distribution χ noise_max_
deviation

TABLE 4
Benchmarking basic operations under different n’s and the default q’s
providing 80-bit security (unit: micro-second). The time is measured

with tasks running on a single core. The dash symbol indicates that a
software only bootstrapping cannot be performed for the given

parameters.

n 2048 4096 8192 16384 32768
encryption 2323 4704 12809 36322 119422
decryption 419 878 3802 13431 50933

addition 17 62 330 1126 4258
multiplication 3839 7886 38088 154495 694098

square 2818 5743 28571 113490 522905
relinearization 465 989 9012 51738 348991
software only
bootstrapping - - - 2.09×

109
5.20×
1010

SGX
bootstrapping 5454 11254 43750 1.43×

105
1.44×
106

which 703 lines of code are written to port SEAL v2.3 into
SGX, and to eliminate the side channel leakages, 386 lines for
the socket communication, and 481 lines for the scheduling
algorithm. In this section, we evaluate our TEEFHE imple-
mentation by addressing the following questions:
(1) How is the performance of SGX bootstrapping?
(2) How effective is TEEFHE on a real computing task

compared with SEAL itself?
(3) How does the scheduling algorithm scale when han-

dling multiple client requests?
We follow the notations in SEAL v2.3 as shown in

Table 3. The choice of encryption parameters significantly
affects the performance, capabilities, and security of the
encryption scheme. Using a greater n allows for a greater
q to be used without decreasing the security level, and
thus the depth of the homomorphic operations becomes
greater. On the other hand, a greater n will also decrease
the performance (Table 4).

4.1 Benchmarking TEEFHE
We ran a few benchmarks with different parameters, in
which n varies from 2048 to 32768, while q is selected
accordingly to ensure 80-bit security. The results are summa-
rized in Table 4. It can be seen that when n becomes larger,
the running time of all operations increases significantly.
For example, the time for homomorphic evaluation of a
multiplication increases for 180.8×. We also observe the
increased memory usage for larger n.

As expected, the performance of SGX bootstrapping is
dependent on the encryption and decryption time, which
is on the same order of magnitude as the homomorphic
multiplication, a bit slower than a simple encryption and
decryption when n is small, since extra time is spent on
transferring the ciphertext across enclave boundaries. When
n is large, however, the SGX-based bootstrapping becomes
slower, which can be caused by cache misses or page faults
as it now has a larger memory footprint.

Since software only bootstrapping is not currently sup-
ported in the latest SEAL version 2.3.1, we requested a
development version of SEAL from the Microsoft Research.
Compared with the implemented bootstrapping in the de-
velopment version of SEAL, the SGX bootstrapping has a
performance gain of over 4 orders of magnitude when the
same parameters are used. For example, when n = 16384
the time for the software only and SGX bootstrapping is
2089 seconds and 0.088 second respectively.

Parameter selection. From Table 4 it can be seen that
bootstrapping cannot be supported for smaller n’s (i.e.
n = 2048, 4096, 8192) in SEAL, since the bootstrapping
circuit already exceeds the maximum depth that can be
correctly evaluated by the SHE scheme.

With the assistance of TEE-based bootstrapping, how-
ever, an SHE scheme can be bootstrapped to an FHE scheme
as long as it supports at least one multiplication and/or one
addition. In our experiment we found that the SHE scheme
is bootstrappable even for n = 2048 (with proper q pro-
viding 80-bit security). Since the TEE-based bootstrapping
is fast, it can be more efficient for small n though such a
parameter causes more bootstrapping. When smaller n is
used, the other homomorphic operations such as addition
and multiplication, are also much faster in comparison with
the setting of n = 32768. It also incurs less memory usage
when smaller n is in use and the computation is performed
over a smaller ring.

Overhead of removing side channels. To understand the
overhead induced by removing side channels, we bench-
marked SGX bootstrapping (with vs. without side channels),
averaged over 1000 measurements, and found no observable
performance difference. It is reasonable since we only added
a bit extra computation to remove the side channels.

4.2 Evaluating TEEFHE on a Logistic Regression Task

In this section we report our evaluation on the TEEFHE-
based implementation of logistic regression against the soft-
ware only implementation, adopting the data set and the
security requirements of the 2017 iDASH Genome Privacy
Competition [8].

Logistic Regression Task. In the 2017 iDASH Genomic
Privacy Competition, the participating teams were given
genotype/phenotype data about two cohorts (disease vs.
healthy), and were challenged to develop a logistic regres-
sion model to predict the disease. The computations were
required to be performed on ciphertext in order to protect
the sensitive health data. The testing data set contains 500
records and 5 binary covariates. The competition requires
the solutions provide 80-bit security.

Evaluation Setting. Parameters were set as follows.
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TABLE 5
Evaluation on a logistic regression task (time measured in seconds).

Parameters are set to ensure 80-bit security level.

Key
Generation

Data
Preparation Iteration Memory

Software Only
(n = 32768) 13.71 447.11 6697.24 50.02 GiB

TEEFHE
(n=4096) 0.19 15.36 80.83 455.78 MiB

TEEFHE
(n=2048) 0.09 7.60 35.41 225.86 MiB
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Fig. 5. Average waiting time for each client bootstrapping request, with
the clients number ranging from 4 to 28, and server threads number
ranging from 1 to 4.

• Software only implementation with SEAL. We adopted the
parameters with n = 32768 and q of bit length 1020,
which offers 80-bit security1. At most 10 iterations can be
performed before bootstrapping is needed.

• TEEFHE. We used two parameter settings for TEEFHE:
n = 4096 (and n = 2048) with q providing 80-bit secu-
rity, with which 5 (and 505) bootstrapping are needed for
each iteration respectively.

We used a single thread to perform the homomorphic
computations and bootstrapping for both the software-
based and SGX bootstrapping.

Evaluation Result. The experiment results are summarized
in Table 5. Since smaller n can be used with TEEFHE,
compared with software only implementation, the running
time for the key generation and data encryption is reduced
significantly, e.g. the time for key generation was reduced
from 13.71 seconds to 0.19 (and 0.09) second. The memory
usage has also dropped, from 50.02 GiB for the software-
based solution to 455.78 (and 225.86) MiB for the TEEFHE
implementation. Overall, the computation in TEEFHE is
about 2 orders faster and the memory usage is less than
1% of the software only implementation.

4.3 Evaluating the Bootstrapping Scheduler
We emulated 4 to 28 clients requesting bootstrapping ser-
vices from 4 machines to a single SGX-enabled bootstrap-
ping server with a thread pool of a size between 1 and
4. All the client and server machines are equipped with

1. Note that a large n is necessary for the software only imple-
mentation to support bootstrapping and to increase the depth before
bootstrapping is needed.

an Intel Xeon E3-1280 v5 processor at 3.7 GHz with 64
GB memory. The clients and the server are connected in a
local network environment with 118 MB/s bandwidth and
latency of 0.0259 ms.

In our experiment, the parameters for FHE were set
as n = 8192 and q of bit length 219. Each client ran
homomorphic operations in a busy loop of 500 iterations.
For each iteration, the client performed a homomorphic
addition followed by a homomorphic multiplication. Then
the client estimated the current noise budget using the
Simulator class object. Afterwards, a request for boot-
strapping along with the noise estimation was sent to the
server. We evaluated the average waiting time (the time
between a bootstrapping request is inserted to the task
queue and the server returns the refreshed ciphertext) for
each thread’s request. The result is shown in Figure 5. It
can be seen that the average waiting time begins to increase
when the client number is greater than 8; when the server
has SGX thread pool of size 1, the average waiting time
can increase up to over 200 ms, indicating the SGX thread
can no longer handle the clients’ bootstrapping requests in
time, and as a result, the noise level in the client exceeds the
threshold, and must wait for bootstrapping task in the task
queue to be completed. When the size of the SGX thread
pool on the server increases to 2 or 4, the scheduler will
decide whether the bootstrapping request can be served
earlier depending on the current length of the task queue.
As a result, the waiting time for the request is never too
long, showing that the scheduler works well balancing the
workload.

A notable observation from the result, however, is that
when there are 12 clients, the waiting time is even longer
if the server has a thread pool of size 4. One possible
explanation is that the client bootstrapping requests are
served more aggressively, which causes the performance
degradation due to the contention of CPU and EPC memory
resources, because the processor only has 4 physical cores
and less than 128 MiB available EPC memory. We will
further explore the issue in future work.

4.4 Summary

Overall, for all evaluated parameters the SGX bootstrapping
is efficient and over 4 orders of magnitude faster than the
software only bootstrapping when performed over the same
ring. Furthermore TEEFHE enables the use of smaller n’s
as long as 1 homomorphic addition and multiplication can
be evaluated with the underlying SHE scheme. Using a
smaller n = 2048 the performance gain over n = 32768
is over 180× for homomorphic operations, and 6 orders
of magnitude for bootstrapping (5454 micro-seconds vs.
52031 seconds). The memory consumption is also brought
down since the computation is performed over a smaller
ring. While running homomorphic evaluation on a logistic
regression task, the overall speed up is of 2 orders and the
memory consumption is brought down to less than 1%.

5 DISCUSSION AND FUTURE WORKS

In this paper we proposed TEEFHE, a hybrid solution
combining hardware TEEs and homomorphic encryption
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schemes. We have implemented a prototype TEEFHE based
on Intel’s SGX and SEAL, and evaluated it on a logistic
regression task. The results showed that TEEFHE exhibits a
promising improvement over software only implementation
of FHE schemes in terms of performance.

Nevertheless, we believe the following research direc-
tions are needed to further explore the capability of bridging
the gap between hardware TEEs and conventional crypto-
graphic schemes to gain better performance and to push the
cryptographic schemes towards practical use.
• Applying TEEFHE to more application scenarios. Besides

logistic regression, it deserves more research efforts to
explore the applications of TEEFHE on other privacy pre-
serving computation tasks (including machine learning
algorithms) on biomedical data, especially on genome
data, etc., in which privacy and data protection are of
great importance.

• Supporting more homomorphic encryption schemes. It
is beneficial to realize TEEFHE supporting other SHE
schemes, specifically those GPU-based implementations
such as cuHE, to further accelerate the homomorphic
operations. Another possible future work is exploring the
possibility of bootstrapping those SHE schemes that have
previously been regarded as non-bootstrappable.

• Importing more computations into the TEE. Currently,
we only replaced bootstrapping within SGX. Because
it only involves decryption and re-encryption, the side
channel risks are relatively easier to understand and
mitigate. Importing more time-consuming computations
into the TEE could significantly boost the performance,
but may also introduce more side channel attack surfaces,
including not only the side channels within the computa-
tions in the enclave, but also the network traffic and the
interface function calls (ECalls and OCalls).

6 RELATED WORKS

Optimizations and implementations of homomorphic
encryption schemes. After the first fully homomor-
phic encryption scheme was introduced by Gentry in
STOC’2009 [10], the optimizations and implementations
of homomorphic encryptions schemes have been drawing
more and more attentions of researchers. Gentry’s original
work presents a general framework of constructing ho-
momorphic schemes, however the secret key needs to be
encrypted and made public for the decryption circuit to
use. The first generation of the FHE schemes focuses on
minimizing the size of secret key and the ciphertext [11],
[26], [27], [28], [29], [30].

Homomorphic encryption schemes with the security
based on the hardness of learning with errors (LWE) prob-
lem were presented by Brakerski and Vaikuntanathan since
2011 [31], [32], which marks the beginning of the sec-
ond generation of homomorphic encryption schemes. Their
works introduced a relinearization technique to obtain a
somewhat homomorphic encryption that does not require
hardness assumptions on ideals, and a dimension-modulus
reduction technique to shorten the ciphertexts and reduce
the decryption complexity. Later in 2014, the Brakerski-
Gentry-Vaikuntanathan cryptosystem (BGV) scheme was
proposed to construct leveled FHE schemes which are

capable of evaluating arbitrary polynomial-size circuits of
a priori bounded depth [17]. Other optimizations include
Brakerski’s scale-invariant scheme [33], the Gentry-Sahai-
Waters scheme (GSW) [34], and the Fan-Vercauteren cryp-
tosystem (FV) [18], etc.

The first reported implementation of fully homomorphic
encryption is the Gentry-Halevi implementation of Gentry’s
original scheme [11]. Now a few open source implementa-
tions of the second-generation FHE scheme are reported [7],
[12], [13], [14], [15], [16], [35], [36], [37], [38]. These are
implemented on general computing resources such as CPU
and GPU, and do not utilize the recent TEE techniques.

SGX side channels. Although the design of SGX prevents
direct access to the enclave code and data, it has been
demonstrated that information leakage from the enclave is
possible through many kinds of side channels.

The first demonstrated type of side channel attacks is
the controlled channel attacks [4], which infer the page
level memory access patterns of an enclave by setting and
resetting the present bit of the page table entries (PTEs).
Controlled channel attacks induce a huge number of page
faults and can be detected within the enclave with the help
of Transactional Synchronization Extensions (TSX) [39], [40].
However the variant of the controlled channel attack can
still work by observing the accessed flags in the PTEs [5],
[19]. There are also side channel attacks targeting other com-
petitive use of resources, such as the caches [20], [41], [42],
branch target buffer [21], translation look-aside buffer [43],
store buffer [44], cache directories [45], MMU [46] and
DRAM row buffer [47]. Side channels related to instructions
with variant timing, such as rdseed [48] and floating point
instructions [49] are also published. The side channel threat
against SGX can be more dangerous since the attacker can
precisely control the enclave execution with SGX-Step [50].

Recently, side channel attacks named meltdown [51] and
spectre [52] exploiting the out-of-order execution engine of
modern processors have gained much attention. The vari-
ants can also be applied to SGX [53], [54]. The vulnerabilities
have been fixed by the recent microcode update which can
be verified remotely by checking the CPU security version
numbers (CPUSVN) through remote attestation.

SGX secured systems and applications. The use of SGX in
many scenarios has been studied, e.g., supporting secure
distributed data analytics in the cloud [55], [56], secure
networking [57], [58], [59], privacy preserving biomedical
analysis [60], [61], [62], etc. It has also been developed to
support secure database queries [63], [64], [65], [66].

More related to this work are a series of researches using
SGX to enhance cryptographic applications, e.g., supporting
secure two party [67] and multi-party computation [68].
Iron [69] utilizes SGX to construct secure and practical
functional encryption primitives. The core of Iron is a key
management enclave to generate encryption keys and sign-
ing keys and authorize functions upon a function request.
When the function is recovered in a decryption enclave, the
function code can be executed in the decryption enclave or
the function enclave. Iron makes uses of SGX’s attestation
service and designs provable secure protocols to ensure the
security of the system. In the design of Iron, the function
codes are executed within the enclave; while in our TEEFHE

10



design, the operations are executed homomorphically out-
side the enclave.

The idea of combining SGX and homomorphic encryp-
tion are proposed in very recent works [70], [71], [72], [73]. In
these works, only certain operations are performed homo-
morphically outside the enclave; Otherwise, the ciphertexts
are sent to the enclave for decryption and further computa-
tion. While the idea is similar, our work exhibits significant
difference in the following aspects: 1© considering the side
channel threat within SGX we imported a minimum com-
putation into SGX and made effort to make it side channel
resilient; 2© TEEFHE supports arbitrary computation to
be performed without pre-configuring the enclave. 3© Our
design also introduced a schedule process to fully utilize the
limited TEE resources to accelerate the whole computation
process. We argue that these are of great importance in the
design of a hybrid system.

7 CONCLUSION

In this paper we proposed a hybrid solution combining
hardware trusted execution environment (TEE) and homo-
morphic encryption schemes. The proposed TEEFHE sys-
tem achieves both security and efficiency in a way that re-
places the time consuming bootstrapping with a decryption-
and-re-encryption step in an SGX enclave. All side channel
leakages within the enclave are carefully removed. TEEFHE
not only offers a speed-up to the bootstrapping operation,
but also enables the somewhat homomorphic encryption
to be bootstrappable with small secret key and ciphertext
(and thus accelerates basic homomorphic operations such
as addition and multiplication) and reduces the memory
consumption in the homomorphic computation. Consistent
with this expectation, the evaluation of our TEEFHE imple-
mentation showed that it achieved a significant performance
improvement in terms of both performance and memory
consumption.
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