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Intel Software Guard Extensions

Processor Reserved Memory (PRM)
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Controlled-channel attacks: OS controls page tables and
set traps by making pages inaccessible!

spdce



Defenses against page-fault attacks
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Defenses against page-fault attacks
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Defenses against page-fault attacks
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Our contributions

O A comprehensive understanding of SGX memory side channels.
> 8 attack vectors.

O Reducing AEXs induced by page level attacks.
> A new type of attacks.

O Achieving finer-grained (than 4 KB) spatial granularity.
» Cache-DRAM attack.
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Summary of Attack vectors

O V1.
O V2.
O V3.
O V4.
O Vo.
O Vo.
OV/.
O Ve.

Shared TLB entries under HT.

Selective TLB entries flushing without HT.

Referenced PTEs are cached as data.

Updates of accessed flags.

Updates of dirty flags.

Triggering page faults with P/X or reserved bits.

CPU caches are shared between the enclave and non-enclave code.
The memory hierarchy, specifically the row buffers are shared.
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Can we make the attack stealthy by reducing AEXs
iInduced by the attack?



2. Sneaky Page Monitoring Attacks (Vector 4)
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V4. Updates of accessed flags.
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2. Sneaky Page Monitoring Attacks (Vector 4)

V4. Updates of accessed flags.

(r )
“Whenever the processor
uses a paging-structure
L enclave pages ) entry as part of linear-
== ‘k, address translation, it sets
VP page the accessed flag in that
) tables entry (if it is not already
set).”
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2. Sneaky Page Monitoring Attacks (Vector 4)

Basic accessed flags monitoring attack: B-SPM
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2. Sneaky Page Monitoring Attacks

Basic accessed flags monitoring attack: B-SPM

Page-fault based

Accessed-flag based

group size words % words %
1 51599 83.05 45649 73.47
2 7586 12.21 8524 13.72
3 2073 3.34 3027 4.87
4 HhE 0.91 1596 2.57
5 200 0.32 980 1.58
6 60 0.10 810 1.30
7 35 0.06 476 0.77
3 & 0.01 448 0.72
9 0 0 306 0.49
10 0 0 140 0.23
= 10 0 0 173 0.28

Evaluate on Hunspell.

Slowdown is brought
down from 1214.9 X for
page fault attack to 5.1 X

for B-SPM attack.




2. Sneaky Page Monitoring Attacks

What about if the pages that frequently accessed are to be observed?
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2. Sneaky Page Monitoring Attacks

Timing enhancement: T-SPM
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2. Sneaky Page Monitoring Attacks

Timing enhancement: T-SPM
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2. Sneaky Page Monitoring Attacks

Timing enhancement: T-SPM

Evaluate on FreeType.

trigger page

000058000

Slowdown is brought down from

252 X for page fault attack to 0.16 X a-p pairs
for T-SPM attack.

00056000, 0005B000
00058000, 00065000
00056000, 0005E000
00065000, 00022000
0005E000, 00018000




2. Sneaky Page Monitoring Attacks

Can the side effect be further reduced?



2. Sneaky Page Monitoring Attacks

{l:l V1. Shared TLB entries under HT. ]

O V2. Selective TLB entries flushing without HT.

O V3. Referenced PTEs are cached as data.

O V4/5. Updates of accessed/dirty flags.

O V6. Triggering page faults with P/X or reserved bits.

O V7. CPU caches are shared between the enclave and non-enclave code.
O V8. The memory hierarchy, specifically the row buffers are shared.
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2. Sneaky Page Monitoring Attacks

Evaluation on EdDSA of Libgcrypt v1.7.6

void
_gcry_mpi_ec_mul_point (mpi_point_t result,
gcry_mpi_t scalar, mpi_peint_t point,
mpi_ec_t ctx) {
if (ctx->model == MPI_EC_EDWARDS
|| (ctx->model == MPI_EC_WEIERSTRASS
B& mpi_is_secure (scalar))) {
if (mpi_is_secure (scalar)) {
f% If SCALAR is in secure memory we assume that it is the
secret key we use constant time operation. */

}

else {
for (j=nbits-1; j == @&; j--) {
_gcry_mpi_ec_dup_point (result, result, ctx);
<if::mri_test_bit (scalar, j))
cry_mpi_ec_add_points (result, result, pninéz:;;;;?
}
}

return;
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Evaluation on EdDSA of Libgcrypt v1.7.6

void
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mpi_ec_t ctx) {
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PP st Attacks Number of AEXs

if (mpi_is_secure (scalar)) {

f% If SCALAR is in secure memory we assume that it is the Page faU|t a_ttaCk 71,000

secret key we use constant time operation. */

) e B-SPM attack 33.000

for (j=nbits-1; j == @&; j--) {

—

_gcry_mpi_ec_dup_point (result, result, ctx);

@pl_test_bit (scalar, j)) T-SPM attaCk <i—;306>
cry_mpi_ec_add_points (result, result, poingz:;;;;?

} } * HT-SPM is designed to reduce AEXs for data
return; pages, and is not presented in the comparison.
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3. Achieving fine-grained spatial granularity

O Cache-based attack
> Prime+Probe: 16 KB, if 2048 cache set, 128 MB EPC
>—FElush+Reload- 64 B

O DRAMA attack

> The program needs to have a large memory footprint,
otherwise the memory reference will mostly hit the cache.

Cache-DRAM attack: finer-grained attack with less noise.



3. Achieving fine-grained spatial granularity
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Cache-DRAM attack cache priming
: icti h
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Summary of Attack Vectors

Vectors Spatial granularity AEX Slow-down

*i/dCache PRIME+PROBE 2 MB High High
* L2 Cache PRIME+PROBE 128 KB High High

L3 Cache PRIME+PROBE 16 KB None Modest
Page fault attack 4 KB High High

B/T-SPM 4 KB Modest Modest

HT-SPM 4 KB None Modest
Cross-enclave DRAMA 1 KB None High

Cache-DRAM 64 B None Minimal

* Do not consider attacks under HT. Otherwise the AEX and slow-down will be low.
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Looking again at the attack surfaces
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Conclusions

0 We identified 8 attack vectors in SGX memory manag‘ément.
> There can be more.

O New attacks that induce few AEXs, that bypass existing defenses
> Interrupts are not necessary to attack the enclave.
O Attacks can achieve finer-grained spatial granularity.

O Attack vectors can be combined to be more effective

» TLB flushing + SPM, Cache + DRAM, Page monitoring + timing
> Others?

O Defenses?
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Characterizing memory vectors

Spatial granularity
The smallest unit of information directly observable to the adversary.

Temporal observability
The ability for the adversary to measure the timing signals generated
during the execution of the target program.

Side effects

Observable anomalies caused by an attack, which could be employed to
detect the attack, such as AEX.
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O Life cycle of an enclave thread

EENTER

ERESUME
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Related work on Security’'17

O Vector 3, 4
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