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A comprehensive understanding of SGX memory side channels.
 8 attack vectors.

Reducing AEXs induced by page level attacks.
 A new type of attacks.

Achieving finer-grained (than 4 KB) spatial granularity.
 Cache-DRAM attack.

Our contributions
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Summary of Attack vectors
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 V8. The memory hierarchy, specifically the row buffers are shared.
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V4. Updates of accessed flags.

“Whenever the processor 
uses a paging-structure 
entry as part of linear-
address translation, it sets 
the accessed flag in that 
entry (if it is not already 
set).”

SGX hardware

OS page 
tables

enclave pages
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2. Sneaky Page Monitoring Attacks

Basic accessed flags monitoring attack: B-SPM

Evaluate on Hunspell.

Slowdown is brought 
down from 1214.9× for 
page fault attack to 5.1×
for B-SPM attack.
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2. Sneaky Page Monitoring Attacks

Timing enhancement: T-SPM

Evaluate on FreeType.

Slowdown is brought down from 
252× for page fault attack to 0.16×
for T-SPM attack.
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 V1. Shared TLB entries under HT.
 V2. Selective TLB entries flushing without HT.
 V3. Referenced PTEs are cached as data.
 V4/5. Updates of accessed/dirty flags.
 V6. Triggering page faults with P/X or reserved bits.
 V7. CPU caches are shared between the enclave and non-enclave code.
 V8. The memory hierarchy, specifically the row buffers are shared.
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Cache-based attack
 Prime+Probe: 16 KB, if 2048 cache set, 128 MB EPC
 Flush+Reload: 64 B

DRAMA attack
 The program needs to have a large memory footprint, 

otherwise the memory reference will mostly hit the cache.

Cache-DRAM attack: finer-grained attack with less noise.
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Cache-DRAM attack
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Evaluation on a conditional 
branch in Gap 4.8.6.
14.6% detection, <1% false 
detection.



Summary of Attack Vectors

Vectors Spatial granularity AEX Slow-down

* i/dCache PRIME+PROBE 2 MB High High
* L2 Cache PRIME+PROBE 128 KB High High
L3 Cache PRIME+PROBE 16 KB None Modest

Page fault attack 4 KB High High
B/T-SPM 4 KB Modest Modest
HT-SPM 4 KB None Modest

Cross-enclave DRAMA 1 KB None High
Cache-DRAM 64 B None Minimal

* Do not consider attacks under HT. Otherwise the AEX and slow-down will be low.
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Conclusions
We identified 8 attack vectors in SGX memory management.
 There can be more.

New attacks that induce few AEXs, that bypass existing defenses
 Interrupts are not necessary to attack the enclave.

Attacks can achieve finer-grained spatial granularity.
Attack vectors can be combined to be more effective
 TLB flushing + SPM, Cache + DRAM, Page monitoring + timing
 Others?

Defenses? 



Thanks! Any questions?

ww31@indiana.edu

mailto:ww31@indiana.edu
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Characterizing memory vectors
Spatial granularity

The smallest unit of information directly observable to the adversary.
Temporal observability

The ability for the adversary to measure the timing signals generated 
during the execution of the target program.
Side effects

Observable anomalies caused by an attack, which could be employed to 
detect the attack, such as AEX.
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enclave 
mode

non-enclave 
mode

Enclave Initialization (ECREATE/EINIT)

Enclave Destroy (EREMOVE)

EENTER

EEXIT

ERESUME

AEX

Life cycle of an enclave thread
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