
Binary Code Retrofitting and Hardening Using SGX

Shuai Wang, Wenhao Wang, Qinkun Bao, Pei Wang, 

XiaoFeng Wang, and Dinghao Wu

The Pennsylvania State University, Indiana University Bloomington,

Institute of Information Engineering



Motivation

Available in Intel Commercial CPUs

Hardware isolated memory regions

Protection under a strong adversary 

model

A bit performance penalty (~10%)



Motivation

Can binary code hardening benefit from SGX?

Available in Intel Commercial CPUs

Hardware isolated memory regions

Protection under a strong adversary 

model

A bit performance penalty



Motivation

 Graphene-SGX, Haven

 Large TCB (53 kloc for 

Graphene-SGX)



Motivation

 Graphene-SGX, Haven

 Large TCB (53 kloc for 

Graphene-SGX)

 Our solution

 Techniques to dissect binary 

code into multiple 

components

 Put into separated enclaves



Background on SGX

 Two capabilities

 change in enclave 

memory access 

semantics

 protection of the 

address mappings of 

the application

Processor 

Reserved Memory 

(PRM)

ELRANGE
Enclave Page 

Cache (EPC)

address mapping



Background on SGX

 Life cycle

enclave 

mode

non-enclave 

mode

Enclave Initialization (ECREATE/EINIT)

Enclave Destroy (EREMOVE)

EENTER

EEXIT

ERESUME

AEX



Background on SGX

 Life cycle

enclave 

mode

non-enclave 

mode

Enclave Initialization (ECREATE/EINIT)

Enclave Destroy (EREMOVE)

EENTER

EEXIT

ERESUME

AEX



Background on SGX

 Controlled enclave entry

 Separated stack

 CPU state and registers 

are cleared if exceptions 

occur inside the enclaves.



Methodology



Methodology

Interface library: maintain routine code for ecall and ocall

ECALL

OCALL

ECALL



Methodology

In-place binary editing: Trampoline code

ECALL

OCALL

ECALL



Challenges

 Binary code reassembly disassembling

 Uroboros

 How to generate enclave libraries

 Intel SGX SDK

 Binary instrumentation to jump to the enclave entry

 Trampoline code

 Exceptions

 Customized exception handling inside the enclaves



Challenges

 Binary code reassembly disassembling

 Uroboros

 How to generate enclave libraries

 Intel SGX SDK

 Binary instrumentation to jump to the enclave entry

 Trampoline code

 Exceptions

 Customized exception handling inside the enclaves



Some technique details

 In-place binary editing 

 Trampoline code



Some technique details

 Exceptions

 Customized exception handling inside the enclaves



Proof-of-concept implementation

 Extend Uroboros with SGX instrumentation functionalities.

 Employ the core functionality of Uroboros to identify program relocation 

symbols (e.g., code pointers).

 Use industrial standard reverse engineering tool (IDA-Pro) to recover the 

function type information.

 Implement the instrumentation functionality in Scala, with over 1,700 

LOC.

 The proof-of-concept implementation of the exception handling 

mechanism adds 56 lines of C code.



Evaluation

 Evaluations mainly focus on understanding the feasibility and 

cost of the instrumentation products.

 Two major factors would contribute to the performance penalty of 

the SGX protected code:

 Execution slowdown of code components inside enclaves.

 Cross-enclave control flow transfers, e.g., enclave ECALL.



Evaluation Setup

 Our preliminary evaluation instruments sensitive procedures

provided by cryptographic libraries.

 AES implementation in OpenSSL (version 0.9.7)

 Write sample code to trigger the encryption and decryption

functions in the library.

 key length is set as 256.

 AES electronic codebook (ECB) mode.



Evaluation Setup

To measure the performance cost of code within enclave (first factor):

• All encryption/decryption computations are performed within one 

enclave.

• Pointers on key and data blocks are passed in through the interface.



Evaluation Setup

To measure the impact of inter-enclave control flow transfers (second 

factor):

• Put the block-level encryption/decryption functions into the enclave.

• Control the number of inter-enclave control transfers by changing the 

length of the input data.



Evaluation Results

4× overhead over

computation without 

SGX

when processing over 

100k data blocks, 

overhead is 6.91%.



Evaluation Results

We measure the size increase in terms of multiple components:

• Size of output binary is identical with the input, since we perform in-

place binary instrumentation.

• Both SDK routines and our routine code introduce size increase.

• The overall size increase is within a reasonable extent.

• Evaluation One has three more functions than Evaluation Two.



Future works

 Limitations

 How to reliably recover the function prototype?

 How to deal with the shared variables among several isolated enclaves?

 Some instructions/operations may not be supported inside the enclaves.

 …



Thanks! 

Contact: ww31@indiana.edu

mailto:ww31@indiana.edu

