
Searching Cubes for Testing Boolean Functions and
Its Application to Trivium

Meicheng Liu, Dongdai Lin and Wenhao Wang
State Key Laboratory of Information Security

Institute of Information Engineering
Chinese Academy of Sciences
Beijing 100093, P. R. China

Email: meicheng.liu@gmail.com

Abstract—In this paper, we describe a sub-maximal degree
monomial test and propose a heuristic algorithm for searching
favourable cubes, for testing Boolean functions formed by stream
ciphers. We apply them to Trivium, and mount a distinguisher
on Trivium reduced to 839 rounds with 237 complexity, which is
so far the best distinguisher on reduced Trivium.

Index Terms—Stream cipher, Trivium, distinguisher.

I. INTRODUCTION

In a stream cipher, a pseudo-random digit stream called
keystream is generated independently of the plaintext and
ciphertext, and then combined with the plaintext to encrypt or
the ciphertext to decrypt. In the most common form, binary
digits are used, and the keystream is combined with the plain-
text using the exclusive-or (XOR) operation. This is called
a binary additive stream cipher. There is abundant theoretical
knowledge on stream ciphers, and various design principles for
stream ciphers have been proposed and extensively analyzed.
For instance, in the modern stream ciphers, a secret key
accompanied with a public initialization vector (IV) are used
to avoid time-memory trade-off attacks and time-memory-data
trade-off attacks. Generally, the security of a stream cipher is
closely connected to how well this sequence of bits resembles
a truly random sequence.

In a distinguishing attack, the cryptanalyst tries to detect
a behaviour of the generated sequence giving evidence that
this is not a truly random sequence. In [7], Filiol introduced a
test to evaluate the statistical properties of symmetric ciphers
using the number of the monomials in the Boolean functions
that simulate the action of a given cipher. In [11], Saarinen
extended these ideas to a chosen IV statistical attack, called
the d-monomial test, and used it to find weaknesses in several
stream ciphers. In [6] Englund et al. generalized Saarinen’s
idea and proposed a framework for chosen IV statistical
attacks using a polynomial description. Their basic idea is to
select a subset of IV bits as variables. Assuming all other
IV values as well as the key being fixed, one can write a
keystream symbol as a Boolean function of the selected IV
variables. By running through all possible values of these bits

This work was supported by the National 973 Program of China under
Grant 2011CB302400, the National Natural Science Foundation of China
under Grant 61303258, and the Strategic Priority Research Program of the
Chinese Academy of Sciences under Grant XDA06010701.

and creating a keystream output for each of them, the truth
table of this Boolean function is created. It is hoped that this
Boolean function has some statistical weaknesses that can be
detected. Based on these observations, Englund et al. proposed
two new tests, called the monomial distribution test and the
maximal degree monomial test, and then applied them on
some stream cipher proposals of the eSTREAM project. In
particular, they experimentally detected statistical weaknesses
in the keystream of Grain-128 with IV initialization reduced
to 192 rounds as well as in the keystream of Trivium using
an initialization reduced to 736 rounds.

In [1] Aumasson et al. introduced cube tester to mount
distinguishers or to detect nonrandomness in cryptographic
primitives, which combines the cube attack [4] with efficient
property tester, and showed a distinguisher on 790-round
Trivium using a cube of size 30. Stankovski [12] proposed a
greedy distinguisher for 806-round Trivium in 244 operations.
Recently Vardasbi et al. [14] used a so-called multi-χ2 test for
testing the monomials of suplypolys over a set of cubes and
mounted distinguishing attack on 830-round Trivium with a
complexity 239. This is so far the best result of distinguishing
attack on reduced-round Trivium. Besides, Knellwolf et al.
[10] used conditional differential cryptanalysis to distinguish
868-round and 961-round Trivium respectively for 231 and 226

weak keys both with a complexity 225.
The purpose of this paper is to further study chosen

IV statistical analysis of stream ciphers by considering a
keystream bit as a Boolean function. A sub-maximal degree
monomial test combined the Moebius transform is described.
The test runs in 2n cipher operations and requires 2n bits
memory. A heuristic algorithm for searching favourable cubes
for testing Boolean functions is also proposed. Applying this
algorithm to Trivium, a cube of size 28 is found, whose
superpoly at round 790 is constant and which can also be
used to detect the unbalancedness of the output of round
806. The results are already better than [4]. Using the tool
of Moebius transform and sub-maximal degree monomial test,
the results are further improved. Table I summarizes our results
on Trivium, comparing them with the previous distinguishing
attacks. As shown in Table I, all our announced complexities
are lower than previous attacks. All our announced attacks are
fully tested and verified.

496978-1-4673-7704-1/15/$31.00 ©2015 IEEE ISIT 2015

TABLE I
SUMMARY OF THE BEST KNOWN DISTINGUISHING ATTACKS ON TRIVIUM

#Rounds Time
[6] 736 233

[14] 760 226

[1] 785 227

This paper 789 226

[1] 790 230

[14] 795 231

[12] 806 244

This paper 807 231

[14] 830 239

This paper 839 237

II. PRELIMINARIES

A. Hypothesis Testing

A hypothesis test is a method of statistical inference used
for testing a statistical hypothesis. A test result is called
statistically significant if it has been predicted as unlikely
to have occurred by chance alone, according to a threshold
probability—the significance level. Hypothesis tests are used
in determining what outcomes of a study would lead to a
rejection of the null hypothesis for a pre-specified level of
significance. In the Neyman-Pearson framework, the process
of distinguishing between the null hypothesis and the alterna-
tive hypothesis is aided by identifying two conceptual types
of errors (type 1 and type 2), and by specifying parametric
limits on e.g. how much type 1 error will be permitted.

Pearson’s χ2 test is used to assess two types of comparison:
tests of goodness of fit and tests of independence. What we are
interested in is the former. A test of goodness of fit establishes
whether or not an observed frequency distribution differs from
a theoretical distribution.

Let the probabilities of various classes in a distribution be
pi (1 ≤ i ≤ k) with observed frequencies ni (1 ≤ i ≤ k). The
quantity

χ2
s =

k∑
i=1

(ni −Npi)2

Npi

is therefore a measure of the deviation of a sample from
expectation, where N is the sample size. Pearson proved that
the limiting distribution of χ2

s is a chi-squared distribution
[13]. The chi-squared statistic can then be used to calculate a
p-value by comparing the value of the statistic to a chi-squared
distribution. The number of degrees of freedom s is equal to
the number of classes k minus the reduction in degrees of
freedom.

B. Boolean functions

Let F2 denote the binary field and Fn
2 the n-dimensional

vector space over F2. An n-variable Boolean function is a
mapping from Fn

2 into F2. Denote by Bn the set of all n-
variable Boolean functions. An n-variable Boolean function f
can be uniquely represented as its truth table, i.e., a binary
string of length 2n,

f = [f(0, 0, · · · , 0), f(1, 0, · · · , 0), · · · , f(1, 1, · · · , 1)].

An n-variable Boolean function f can also be uniquely rep-
resented as a multivariate polynomial over F2,

f(x1, · · · , xn) =
⊕

c=(c1,··· ,cn)∈Fn
2

ac

n∏
i=1

xcii , ac ∈ F2,

called the algebraic normal form (ANF). The algebraic degree
of f , denoted by deg(f), is defined as max{wt(c) | ac 6= 0},
where wt(x) denotes the Hamming weight of x.

1) Moebius transforms: There is a good relationship be-
tween a Boolean function’s truth values and its ANF. The
coefficients ac’s can be represented as

ac =
⊕

b∈Fn
2 ,supp(b)⊂supp(c)

f(b), (1)

where supp(x) denotes the set of indexes {i|xi 6= 0}. This is
called the Moebius transform or the Reed-Muller transform of
the Boolean function f . A fast Moebius transform algorithm
can be found in [9]. The algorithm has a time complexity of
n2n−1 bit operations and uses a memory of 2n bits. The 32-
bit implementation presented in [9] performs roughly 32 times
less operations.

Data: Truth table S of Boolean function f
Result: Coefficients of the ANF of f

for i from 0 to n− 1 do
Sz ← 2i, Pos← 0
while Pos < 2n do

for j from 0 to Sz − 1 do
S[Pos+Sz+j]← S[Pos+j]⊕S[Pos+Sz+j]

end
Pos← Pos+ 2Sz

end
end
return S

Algorithm 1: Moebius transform algorithm

C. Cube attacks and cube testers

A keystream bit of a stream cipher with an m-bit secret key
K = (k1, k2, · · · , km) and an l-bit IV V = (v1, v2, · · · , vl)
can be seen as a Boolean function f(K,V) with K and V as
variables. The Boolean function f are usually analyzed under
a fixed key K for mounting a successful attack on the cipher.
The function f(K,V) with valued K is a Boolean function
on V , denoted by fK(V), which can be written by

fK(V) =
⊕

c=(c1,··· ,cl)∈Fl
2

gc(K)

l∏
i=1

vcii ,

where gc is a Boolean function on K. By (1) we can see that

gc(K) =
⊕

b∈Fn
2 ,supp(b)⊂supp(c)

fK(b). (2)

The indexes set supp(c) or the set of variables with indexes
inside of supp(c) is called a cube in [4]. In a more general

497

case, one can fix the IV variables V0 outside of a cube Vc,
and rewrites f(K,V) as

fK,V0
(Vc) =gc(K,V0)

∏
i∈supp(c)

vi⊕⊕
supp(c′)(supp(c)

gc′(K,V0)
∏

i∈supp(c′)

vi, (3)

where gc is a Boolean function on K and V0. The function gc
is called a superpoly in [4]. By (1) it follows that

gc(K,V0) =
⊕
b∈Fn

2

fK,V0
(b), (4)

where n equals the cardinality of supp(c). As a matter of fact,
using the Moebius transform described previously, the values
of gc(K,V0) and all gc′(K,V0)’s for a fixed K and V0 can be
computed at once.

In a chosen-IV key recovery attack, the adversary can
control the values of V to exploit the information of gc
and then recover the secret key K, e.g. cube attacks [4]. In
a chosen-IV distinguishing attack, the attacker can control
the values of V to exploit the information of gc and then
distinguishing the cipher from a random one, e.g. cube testers
[1]. The target of cube attacks is finding a set of linear
functions gc’s on the secret key K and recovering the key
by solving this linear system. The goal of cube testers is to
mount distinguishers or detect the nonrandomness of gc.

III. SUB-MAXIMAL DEGREE MONOMIAL TEST

In [11], Saarinen proposed d-monomial test for testing the
balancedness of coefficients of monomials with the same
degrees, and used it to find weaknesses in several stream
ciphers. In [6] Englund et al. generalized Saarinen’s idea and
proposed two tests, called the monomial distribution test and
the maximal degree monomial test, and applied them on some
stream cipher proposals of the eSTREAM project. Cube testers
further generalizes these tests. We refer to [1] for more details
of cube testers.

In this paper, we look inside the sub-maximal degree
monomial test combined with the Moebius transform. The
Moebius transform was suggested in [5] by Dinur and Shamir
to be used to compute every single subcube of a large cube at
once, and was used in [8] by Fouque and Vannet to optimize
cube attacks and mount key recovery attack to 784 and 799
Rounds of Trivium with a complexity 239 and 262 respectively,
which is so far the best key recovery attack on reduced-round
Trivium.

The reasons we are interested in sub-maximal degree mono-
mial test are twofold. On one hand, we can compute the
coefficients of these monomials at once. It costs n2n−1 bit
operations and a memory of 2n bits for the Moebius transform.
To obtain the truth table of the Boolean function fK,V0

generated by the cipher, it needs 2n cipher operations, which
costs much more time than the Moebius transform. While for
separately testing n monomials with algebraic degree n − 1,
it needs n2n−1 cipher operations. This is the reason why

we do not use maximal degree monomial test (noting that
a monomial with algebraic degree n − 1 achieves maximum
degree over a cube of size n − 1). On the other hand, the
nonrandomness appears more likely in the monomials with
sub-maximal degree than the monomials with lower degrees,
especially for the ciphers based on nonlinear feedback shift
registers (NLFSRs).

Given N samples z = (z0, z1, · · · , zN−1) of coefficients of
monomials with degree d, our two hypotheses are

H0: z is sampled from a random function;
H1: z is not sampled from a random function.

By Pearson’s χ2 test as described in Section II-A, we calculate
the quantity

χ2 =
(n0 − N

2)
2

N
2

+
(n1 − N

2)
2

N
2

= 2 ·
(n1 − N

2)
2

N
2

,

where n0 and n1 respectively denote the number of zeros and
ones appearing in z. There is only 1 degree of freedom. The
hypothesis is rejected if the test statistics χ2 is greater than
the tabulated χ2(1− α; 1) value, for a significance level α.

We describe as blew an algorithm for sub-maximal degree
monomial test, where the key of the cipher is unknown but
fixed. In our case, N = n and d = n− 1.

Data: An n-element subset Vc of IV variables, i.e., a
cube of size n

Result: Cipher or Random

Set up truth table S of length 2n on Vc by 2n enquiries
on the cipher with fixed V0
Call Algorithm 1 with S as inputs
crt← 0
for i from 0 to n− 1 do

Pos← 2n − 2i − 1
if S[Pos] = 1 then

crt← crt+ 1
end

end
χ2 ← 2 · (crt−

n
2)2

n
2

if χ2 > χ2(1− α; 1) then
return Cipher

else
return Random

end

Algorithm 2: Sub-maximal degree monomial test

Noting that the approximation to the chi-squared distribution
breaks down if expected frequencies are too low. When the
degree of freedom equals 1, the approximation is not reliable
if expected frequencies are below 10. This yet is not an issue in
our test, since to mount distinguishers we usually need a cube
of size n ≥ 20. Even for n < 20, a better approximation can
be obtained by reducing the absolute value of each difference
between observed and expected frequencies by 0.5 before
squaring; this is called Yates’s correction for continuity [15].

498

As shown previously, Algorithm 2 requires 2n cipher oper-
ations and 2n-bit memory. To mount a successful test for most
keys, it is sufficient to require the success rate of mounting a
distinguisher for a random key to be greater than 0.5.

IV. SEARCHING CUBES FOR TESTERS

Though there are various methods for testing the ANFs of
Boolean functions formed by ciphers, there are few general
methods in the literatures available for searching favourable
cubes to optimize the testers. In [4] Dinur and Shamir used
random walk to search cubes for setting up linear relationships
between the key bits. In [2] Aumasson et al. programmed a
evolutionary algorithm to search good cubes that maximize
the number of rounds after which the superpoly is still not
balanced. These methods both directly manipulate large cubes,
and thus the outcomes and the searching time depend on the
initial cubes, more or less. Stankovski [12] proposed greedy
bit set algorithm with 2n+c complexity. Fouque and Vannet [8]
described an empirical reduction of density of the ANFs for
Trivium, where the union of two disjoint subcubes was used
and the principles of favourable subcubes were also discussed.

In this section, we propose a heuristic method for search-
ing favourable cubes optimizing statistical testers, especially
for NLFSR-based ciphers. Our method is different from the
methods proposed in [4], [2], [12], but similar to Fouque and
Vannet’s. Our ideas are based on exhaustive search on small
cubes and iteratively using the union of favourable subcubes.

For the phase of exhaustion, we estimate the maximum
size n for exhaustive search by maximizing 2n

(
l
n

)
within

a reasonable time. The complexity of this phase is roughly
O(2nmin

(
l

nmin

)
). The exact running time highly depends on the

determiner D0, which is also a crucial part of the algorithm.
An NLFSR-based cipher usually updates a few bits of its
internal state at each round. Considering these bits as Boolean
functions on the secret key and the IV, the corresponding
superpolys over a cube c are always zeros at the first rounds,
but become non-zeros after some rounds. We record the round
at which for the first time at least one of its superpolys is
non-zero, and use D0 to determine whether accepting it as a
favourable subcube. There are some useful principles for D0.
For instance, at the recorded round, the non-zero superpoly
should be non-zero constant, and there should be a sharp gap
rn between this round and the maximum round where the
cubes of the small size reach. These restrictions assure that the
monomial xc appears latter than most of cubes of the same
size and does not divide a bigger monomial when it appears
for the first time.

For the phase of union, it not necessary to require either
the two subcubes c1 and c2 or the two sets C1 and C2 are
disjoint. Our experiments on Trivium show that the union of
joint subcubes usually goes further compared with the union
of two disjoint subcubes, under a same size. The classification
of C and the determiners Di are crucial for efficient selection
of cubes. Taking C1 = C2 = C may be a good choice. In
this case, however, Di should fast rule out a large number of
cubes. For a small size n, e.g. n ≤ 16, Di could be the same

Data: Round function R of a cipher
Result: A set of cubes for testing the cipher

/* exhaustively searching for small cubes */
nmin ← maximum size of cubes for exhaustion
C ← empty set
for n from 1 to nmin do

for each cube c of size n do
if D0(R, c) = 1 then

add c to C
end

end
end
/* union of small cubes */
nmax ← maximum size of cubes for searching
i← 1
while n < nmax do

classify C into two classes C1 and C2

C ← {c1 ∪ c2|c1 ∈ C1, c2 ∈ C2}
for c ∈ C do

if Di(R, c) = 0 then
remove c from C

end
end
n← maximum size of c ∈ C
i← i+ 1

end
return C

Algorithm 3: Searching cubes for testers

as D0. For a large size n, the goal of Di is to select cubes that
maximize the number of rounds after which the superpolys are
constants, where it does not require the superpolys either being
non-zero constants or appearing for the first time. The main
functions may be generated from the state bits or the keystream
bits, when we mention superpolys. We will illustrate our points
by how we treat Trivium in the next section.

Why not use the unions of three or more cubes? On one
hand, checking whether a large cube is desired or not is rather
time consuming. On the other hand, there are much more
choices for combining three or more subcubes than combining
two subcubes. Therefore, we get rid of the unions of three or
more cubes, unless there is an extremely efficient determiner
for selecting such unions.

Furthermore, it is possible that using the Moebius transform
gives a further improvement.

V. EXPERIMENTS ON TRIVIUM

Trivium, a stream cipher designed by Cannière and Preneel
[3], has been selected as one of the portfolio for hardware ci-
phers (Profile 2) by the eSTREAM project. Though Trivium is
designed to provide a flexible trade-off between speed and gate
count in hardware, it also provides extremely efficient software
implementation. It generates up to 264 bits of keystream by
using an 80-bit key and an 80-bit initialization vector (IV).
Trivium contains a 288-bit internal state and uses 1152 rounds

499

of initialization, and 66 rounds of Trivium can be implemented
in parallel. In each round, three bits of its internal state are
updated. It is the simplest eSTREAM submission, yet till now
there is no successful attack faster than exhaustive search on
its full version. We refer to [3] for more details of Trivium.

In this section, we first show the application of Algorithm
3 to Trivium, and then apply sub-maximal degree monomial
test described as Algorithm 2 to testing Trivium.

A. Searching cubes for Trivium

For the phase of exhaustion on Trivium, we set nmin = 6.
Trivium has an 80-bit IV, so we need to test

(
80
6

)
≈ 228.2

cubes of size 6,
(
80
5

)
≈ 224.5 cubes of size 5, and all the

cubes of smaller sizes. Use D0 as suggested previously, in
which 100 random K and V0 are tested for each cube c, and
set rn = 14 for n ≤ 6. In this case, most of cubes have been
eliminated after a few tests rather than 100 tests are done.
Using a computer with a single CPU core running at 3.4 GHz,
it costs about one hour for testing all the cubes of size 6 and
less than two minutes for size n ≤ 5. The maximum rounds
for n = 4, 5, 6 turn out to be respectively 422, 472, 497, where
the number of rounds starts from 0. We discard the cubes of
size less than 4.

For the phase of union, we set nmax = 28. Use C1 = C2 =
C, and discard the union c of c1 and c2 if c contains two
adjacent indexes, e.g. {0, 1}. This is based on the structure of
Trivium, whose nonlinear terms are generated by two adjacent
bits, and it can efficiently eliminate a large number of c. Then
use D0 to filter the rest cubes for n ≤ 12, use a modified D0

for n ≤ 24, where the condition of superpoly being non-zero
constant is removed, and use another modified D0 for n > 24,
where the keystream bits rather than updated bits of internal
state are the targets.

Finally, we obtain a unique cube of size 28 as below,

{0, 2, 4, 6, 8, 10, 12, 15, 17, 19, 21, 23, 25, 28, 30, 34, 36, 38,
42, 44, 47, 49, 51, 53, 57, 64, 71, 79}.

Fixing the IV bits outside of this cube to be zeros, after testing
100 random keys, the module 2 summations of the first output
bits of 790-round Trivium over this cube are all zeros, and at
the same time we can detect unbalancedness of 806-round
Trivium. Combining the observations on the frequencies of
indexes in picked cubes of sizes 26 and 27 from the output C
of Algorithm 3, we obtain the cubes of sizes 31, 34 and 37
as below,

{0, 2, 4, 6, 8, 10, 12, 15, 17, 19, 21, 23, 25, 28, 30, 32, 34, 36,
38, 41, 45, 47, 51, 53, 56, 60, 64, 67, 71, 73, 79},

{0, 2, 4, 6, 8, 10, 12, 15, 17, 19, 21, 23, 25, 28, 30, 32, 34, 36,
38, 41, 43, 45, 47, 49, 51, 53, 56, 58, 60, 64, 66, 68, 71, 79},

{0, 2, 4, 6, 8, 10, 12, 15, 17, 19, 21, 23, 25, 28, 30, 32, 34, 36,
38, 41, 43, 45, 47, 49, 51, 53, 56, 58, 60, 62, 64, 66, 68, 71, 73, 75, 79}.

We tested 100 random keys for sizes 31 and 34 on a computer
with a single CPU core at 3.4 GHz. It costs less than 12 hours
for size 31 and about 3.5 days for size 34. We also tested 96
random keys for size 37 on a computer with 8 CPU cores at
2.6 GHz. The computations take about 5.5 days. The results
are listed in Table II, where UB is short for unbalanced. The

cube of size 26 is the one of size 28 by the exclusion of
indexes {8, 71}, using the tool of Moebius transform.

TABLE II
CUBES AND THEIR SUPERPOLIES OF REDUCED TRIVIUM

#Rounds 789 790 806 807 812 817 824 839
Cube size 26 28 28 31 31 34 34 37
Superpoly 0 0 UB 0 UB 0 UB 0a

aIt is almost zero constant.

B. Sub-maximal degree monomial tests on Trivium

In the tests, we set the significance level α = 10−3. Noting
that at least 10 tries should be done to achieve a significance
level of 2−10 even if the superpoly is constant. It means that
the complexity is at least 10 · 2n when using a single cube of
size n and testing a single bit each time. We verified for n =
26, 31, 34, 37 that the complexity is cut down to 2n by using
Algorithm 2, at the cost of decreasing success rate. However,
as shown in Table III, the success rates are always greater
than 0.5 when the superpolys are zero constants or almost
zero constants.

TABLE III
COMPLEXITIES OF TESTS ON REDUCED TRIVIUM

#Rounds 789 807 817 824 839
Time 226 231 234 234 237

Success rate 0.58 0.67 0.78 0.24 0.56

REFERENCES

[1] J. Aumasson, I. Dinur, W. Meier, A. Shamir: Cube Testers and Key
Recovery Attacks on Reduced-Round MD6 and Trivium. FSE 2009:
1–22

[2] J. Aumasson, I. Dinur, L. Henzen, et al.: Efficient FPGA Implementa-
tions of High-Dimensional Cube Testers on the Stream Cipher Grain-
128. IACR Cryptology ePrint Archive 2009: 218 (2009)

[3] C. D. Cannière, B. Preneel: Trivium. The eSTREAM Finalists 2008:
244–266

[4] I. Dinur, A. Shamir: Cube Attacks on Tweakable Black Box Polynomi-
als. EUROCRYPT 2009: 278–299

[5] I. Dinur, A. Shamir: Breaking Grain-128 with Dynamic Cube Attacks.
FSE 2011: 167–187

[6] H. Englund, T. Johansson, M. S. Turan: A Framework for Chosen IV
Statistical Analysis of Stream Ciphers. INDOCRYPT 2007: 268–281

[7] E. Filiol: A new statistical testing for symmetric ciphers and hash
functions. In: R. Deng et al. (Eds.) ICICS 2002, LNCS 2513, pp. 342–
353. Springer, Heidelberg (2002)

[8] P. Fouque, T. Vannet: Improving Key Recovery to 784 and 799 Rounds
of Trivium Using Optimized Cube Attacks. FSE 2013: 502–517

[9] A. Joux: Algorithmic cryptanalysis. 1st ed., Chapman & Hall/CRC,
2009.

[10] S. Knellwolf, W. Meier, M. Naya-Plasencia: Conditional Differential
Cryptanalysis of Trivium and KATAN. Selected Areas in Cryptography
2011: 200–212

[11] M.J.O. Saarinen: Chosen-IV statistical attacks on estream stream cipher-
s. eSTREAM, ECRYPT Stream Cipher Project, Report 2006/013 (2006)

[12] P. Stankovski: Greedy Distinguishers and Nonrandomness Detectors.
INDOCRYPT 2010: 210–226

[13] K. Pearson. On the criterion that a given system of deviations from the
probable in the case of a correlated system of variables is such that
it can be reasonably supposed to have arisen from random sampling.
Philosophical Magazine Series 5 50(302): 157–175 (1900)

[14] A. Vardasbi, M. Salmasizadeh, J. Mohajeri: Superpoly algebraic normal
form monomial test on Trivium. IET Information Security 7(3): 230–238
(2013)

[15] F. Yates: Contingency table involving small numbers and the χ2 test.
Supplement to the Journal of the Royal Statistical Society 1(2): 217–235
(1934)

500

